Suppr超能文献

利用合成和基于图像的眼动数据预测儿童自闭症谱系障碍诊断

Predicting ASD Diagnosis in Children with Synthetic and Image-based Eye Gaze Data.

作者信息

Liaqat Sidrah, Wu Chongruo, Duggirala Prashanth Reddy, Cheung Sen-Ching Samson, Chuah Chen-Nee, Ozonoff Sally, Young Gregory

机构信息

University of Kentucky.

University of California, Davis.

出版信息

Signal Process Image Commun. 2021 May;94. doi: 10.1016/j.image.2021.116198. Epub 2021 Feb 16.

Abstract

As early intervention is highly effective for young children with autism spectrum disorder (ASD), it is imperative to make accurate diagnosis as early as possible. ASD has often been associated with atypical visual attention and eye gaze data can be collected at a very early age. An automatic screening tool based on eye gaze data that could identify ASD risk offers the opportunity for intervention before the full set of symptoms is present. In this paper, we propose two machine learning methods, synthetic saccade approach and image based approach, to automatically classify ASD given children's eye gaze data collected from free-viewing tasks of natural images. The first approach uses a generative model of synthetic saccade patterns to represent the baseline scan-path from a typical non-ASD individual and combines it with the real scan-path as well as other auxiliary data as inputs to a deep learning classifier. The second approach adopts a more holistic image-based approach by feeding the input image and a sequence of fixation maps into a convolutional or recurrent neural network. Using a publicly-accessible collection of children's gaze data, our experiments indicate that the ASD prediction accuracy reaches 67.23% accuracy on the validation dataset and 62.13% accuracy on the test dataset.

摘要

由于早期干预对患有自闭症谱系障碍(ASD)的幼儿非常有效,因此尽早进行准确诊断至关重要。ASD通常与非典型视觉注意力有关,并且可以在非常小的年龄收集眼动数据。基于眼动数据的自动筛查工具能够识别ASD风险,这为在出现全套症状之前进行干预提供了机会。在本文中,我们提出了两种机器学习方法,即合成扫视法和基于图像的方法,以根据从自然图像自由观看任务中收集的儿童眼动数据自动对ASD进行分类。第一种方法使用合成扫视模式的生成模型来表示典型非ASD个体的基线扫描路径,并将其与真实扫描路径以及其他辅助数据相结合,作为深度学习分类器的输入。第二种方法采用更全面的基于图像的方法,将输入图像和一系列注视点图输入到卷积神经网络或循环神经网络中。使用公开可用的儿童注视数据集,我们的实验表明,在验证数据集上ASD预测准确率达到67.23%,在测试数据集上准确率达到62.13%。

相似文献

2
PREDICTING AUTISM DIAGNOSIS USING IMAGE WITH FIXATIONS AND SYNTHETIC SACCADE PATTERNS.利用带有注视点和合成扫视模式的图像预测自闭症诊断
IEEE Int Conf Multimed Expo Workshops. 2019 Jul;2019:647-650. doi: 10.1109/ICMEW.2019.00125. Epub 2019 Aug 15.

引用本文的文献

1
Age of machine learning: new trends in autism spectrum disorder prediction.机器学习时代:自闭症谱系障碍预测的新趋势
Front Microbiol. 2025 Jul 11;16:1492484. doi: 10.3389/fmicb.2025.1492484. eCollection 2025.

本文引用的文献

1
PREDICTING AUTISM DIAGNOSIS USING IMAGE WITH FIXATIONS AND SYNTHETIC SACCADE PATTERNS.利用带有注视点和合成扫视模式的图像预测自闭症诊断
IEEE Int Conf Multimed Expo Workshops. 2019 Jul;2019:647-650. doi: 10.1109/ICMEW.2019.00125. Epub 2019 Aug 15.
5
Age at First Identification of Autism Spectrum Disorder: An Analysis of Two US Surveys.首次确诊自闭症谱系障碍的年龄:两项美国调查分析
J Am Acad Child Adolesc Psychiatry. 2017 Apr;56(4):313-320. doi: 10.1016/j.jaac.2017.01.012. Epub 2017 Feb 3.
9
From local to global processing: the development of illusory contour perception.从局部到全局加工:错觉轮廓知觉的发展
J Exp Child Psychol. 2015 Mar;131:38-55. doi: 10.1016/j.jecp.2014.11.001. Epub 2014 Dec 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验