Suppr超能文献

噪声暴露工人高频听力损失的风险模型和列线图

A risk model and nomogram for high-frequency hearing loss in noise-exposed workers.

作者信息

Sun Ruican, Shang Weiwei, Cao Yingqiong, Lan Yajia

机构信息

Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.

Department of Occupational Health and Radial Control, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China.

出版信息

BMC Public Health. 2021 Apr 17;21(1):747. doi: 10.1186/s12889-021-10730-y.

Abstract

BACKGROUND

High-frequency hearing loss is a significant occupational health concern in many countries, and early identification can be effective for preventing hearing loss. The study aims to construct and validate a risk model for HFHL, and develop a nomogram for predicting the individual risk in noise-exposed workers.

METHODS

The current research used archival data from the National Key Occupational Diseases Survey-Sichuan conducted in China from 2014 to 2017. A total of 32,121 noise-exposed workers completed the survey, of whom 80% workers (n = 25,732) comprised the training cohort for risk model development and 20% workers (n = 6389) constituted the validation cohort for model validation. The risk model and nomogram were constructed using binary logistic models. The effectiveness and calibration of the model were evaluated with the receiver operating characteristic curve and calibration plots, respectively.

RESULTS

A total of 10.06% of noise-exposed workers had HFHL. Age (OR = 1.09, 95% CI: 1.083-1.104), male sex (OR = 3.25, 95% CI: 2.85-3.702), noise exposure duration (NED) (OR = 1.15, 95% CI: 1.093-1.201), and a history of working in manufacturing (OR = 1.50, 95% CI: 1.314-1.713), construction (OR = 2.29, 95% CI: 1.531-3.421), mining (OR = 2.63, 95% CI: 2.238-3.081), or for a private-owned enterprise (POE) (OR = 1.33, 95% CI: 1.202-1.476) were associated with an increased risk of HFHL (P < 0.05).

CONCLUSIONS

The risk model and nomogram for HFHL can be used in application-oriented research on the prevention and management of HFHL in workplaces with high levels of noise exposure.

摘要

背景

高频听力损失在许多国家都是一个重大的职业健康问题,早期识别对于预防听力损失可能有效。本研究旨在构建并验证高频听力损失(HFHL)的风险模型,并开发一种列线图以预测噪声暴露工人的个体风险。

方法

本研究使用了2014年至2017年在中国进行的全国重点职业病调查 - 四川的存档数据。共有32121名噪声暴露工人完成了调查,其中80%的工人(n = 25732)组成了风险模型开发的训练队列,20%的工人(n = 6389)构成了模型验证的验证队列。风险模型和列线图使用二元逻辑模型构建。分别使用受试者工作特征曲线和校准图评估模型的有效性和校准情况。

结果

共有10.06%的噪声暴露工人患有高频听力损失。年龄(OR = 1.09,95%CI:1.083 - 1.104)、男性(OR = 3.25,95%CI:2.85 - 3.702)、噪声暴露持续时间(NED)(OR = 1.15,95%CI:1.093 - 1.201)以及有制造业(OR = 1.50,95%CI:1.314 - 1.713)、建筑业(OR = 2.29,95%CI:1.531 - 3.421)、采矿业(OR = 2.63,95%CI:2.238 - 3.081)或在民营企业(POE)工作的历史(OR = 1.33,95%CI:1.202 - 1.476)与高频听力损失风险增加相关(P < 0.05)。

结论

高频听力损失的风险模型和列线图可用于噪声暴露水平高的工作场所中高频听力损失预防和管理的应用型研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70cc/8053268/6414c34512be/12889_2021_10730_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验