Suppr超能文献

血流状态下血管外损伤中血小板聚集的数学模型

A MATHEMATICAL MODEL OF PLATELET AGGREGATION IN AN EXTRAVASCULAR INJURY UNDER FLOW.

作者信息

Link Kathryn G, Sorrells Matthew G, Danes Nicholas A, Neeves Keith B, Leiderman Karin, Fogelson Aaron L

机构信息

Department of Mathematics, University of California, Davis, Davis, CA 95616 USA.

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401 USA.

出版信息

Multiscale Model Simul. 2020;18(4):1489-1524. doi: 10.1137/20m1317785. Epub 2020 Nov 18.

Abstract

We present the first mathematical model of flow-mediated primary hemostasis in an extravascular injury which can track the process from initial deposition to occlusion. The model consists of a system of ordinary differential equations (ODEs) that describe platelet aggregation (adhesion and cohesion), soluble-agonist-dependent platelet activation, and the flow of blood through the injury. The formation of platelet aggregates increases resistance to flow through the injury, which is modeled using the Stokes-Brinkman equations. Data from analogous experimental (microfluidic flow) and partial differential equation models informed parameter values used in the ODE model description of platelet adhesion, cohesion, and activation. This model predicts injury occlusion under a range of flow and platelet activation conditions. Simulations testing the effects of shear and activation rates resulted in delayed occlusion and aggregate heterogeneity. These results validate our hypothesis that flow-mediated dilution of activating chemical adenosine diphosphate hinders aggregate development. This novel modeling framework can be extended to include more mechanisms of platelet activation as well as the addition of the biochemical reactions of coagulation, resulting in a computationally efficient high throughput screening tool of primary and secondary hemostasis.

摘要

我们提出了首个血管外损伤中血流介导的初级止血数学模型,该模型能够追踪从初始沉积到阻塞的过程。该模型由一组常微分方程(ODEs)组成,这些方程描述了血小板聚集(黏附和凝聚)、可溶性激动剂依赖性血小板活化以及血液通过损伤部位的流动。血小板聚集体的形成增加了通过损伤部位的血流阻力,这是使用斯托克斯-布林克曼方程进行建模的。来自类似实验(微流体流动)和偏微分方程模型的数据为ODE模型中血小板黏附、凝聚和活化描述所使用的参数值提供了依据。该模型预测了在一系列血流和血小板活化条件下的损伤阻塞情况。测试剪切力和活化速率影响的模拟结果导致阻塞延迟和聚集体异质性。这些结果验证了我们的假设,即血流介导的激活化学物质二磷酸腺苷的稀释会阻碍聚集体的发展。这个新颖的建模框架可以扩展到包括更多血小板活化机制以及凝血生化反应,从而形成一个计算高效的初级和次级止血高通量筛选工具。

相似文献

1
A MATHEMATICAL MODEL OF PLATELET AGGREGATION IN AN EXTRAVASCULAR INJURY UNDER FLOW.
Multiscale Model Simul. 2020;18(4):1489-1524. doi: 10.1137/20m1317785. Epub 2020 Nov 18.
2
A density-dependent FEM-FCT algorithm with application to modeling platelet aggregation.
Int J Numer Method Biomed Eng. 2019 Sep;35(9):e3212. doi: 10.1002/cnm.3212. Epub 2019 Jul 9.
3
Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow.
Math Med Biol. 2011 Mar;28(1):47-84. doi: 10.1093/imammb/dqq005. Epub 2010 May 3.
4
Intelligent classification of platelet aggregates by agonist type.
Elife. 2020 May 12;9:e52938. doi: 10.7554/eLife.52938.
5
Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow.
Biophys J. 1997 Nov;73(5):2819-35. doi: 10.1016/S0006-3495(97)78311-5.
8
Continuum modeling of thrombus formation and growth under different shear rates.
J Biomech. 2022 Feb;132:110915. doi: 10.1016/j.jbiomech.2021.110915. Epub 2022 Jan 4.
9
Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method.
J Math Biol. 2016 Feb;72(3):649-81. doi: 10.1007/s00285-015-0891-2. Epub 2015 May 24.
10
Image-based flow simulation of platelet aggregates under different shear rates.
PLoS Comput Biol. 2023 Jul 10;19(7):e1010965. doi: 10.1371/journal.pcbi.1010965. eCollection 2023 Jul.

引用本文的文献

1
Platelet activation near point-like source of agonist: Experimental insights and computational model.
PLoS One. 2024 Oct 3;19(10):e0308679. doi: 10.1371/journal.pone.0308679. eCollection 2024.
2
A Multiscale Model for Shear-Mediated Platelet Adhesion Dynamics: Correlating In Silico with In Vitro Results.
Ann Biomed Eng. 2023 May;51(5):1094-1105. doi: 10.1007/s10439-023-03193-2. Epub 2023 Apr 5.
3
Image Fusion and Stylization Processing Based on Multiscale Transformation and Convolutional Neural Network.
Comput Intell Neurosci. 2022 Apr 28;2022:1181189. doi: 10.1155/2022/1181189. eCollection 2022.

本文引用的文献

1
A mathematical model of coagulation under flow identifies factor V as a modifier of thrombin generation in hemophilia A.
J Thromb Haemost. 2020 Feb;18(2):306-317. doi: 10.1111/jth.14653. Epub 2019 Nov 1.
2
A density-dependent FEM-FCT algorithm with application to modeling platelet aggregation.
Int J Numer Method Biomed Eng. 2019 Sep;35(9):e3212. doi: 10.1002/cnm.3212. Epub 2019 Jul 9.
3
A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow.
PLoS One. 2018 Jul 26;13(7):e0200917. doi: 10.1371/journal.pone.0200917. eCollection 2018.
4
A microfluidic model of hemostasis sensitive to platelet function and coagulation.
Cell Mol Bioeng. 2017 Feb;10(1):3-15. doi: 10.1007/s12195-016-0469-0. Epub 2016 Oct 24.
5
A Mathematical Model of Venous Thrombosis Initiation.
Biophys J. 2016 Dec 20;111(12):2722-2734. doi: 10.1016/j.bpj.2016.10.030.
6
Synergy Between Tissue Factor and Exogenous Factor XIa in Initiating Coagulation.
Arterioscler Thromb Vasc Biol. 2016 Dec;36(12):2334-2345. doi: 10.1161/ATVBAHA.116.308186. Epub 2016 Oct 27.
7
Blood flow and mass transfer regulation of coagulation.
Blood Rev. 2016 Sep;30(5):357-68. doi: 10.1016/j.blre.2016.04.004. Epub 2016 Apr 29.
8
Fluid Mechanics of Blood Clot Formation.
Annu Rev Fluid Mech. 2015 Jan 1;47:377-403. doi: 10.1146/annurev-fluid-010814-014513.
9
Phenotypic heterogeneity of hemostasis in severe hemophilia.
Semin Thromb Hemost. 2015 Nov;41(8):826-31. doi: 10.1055/s-0034-1395349. Epub 2015 Jan 23.
10
The hydraulic permeability of blood clots as a function of fibrin and platelet density.
Biophys J. 2013 Apr 16;104(8):1812-23. doi: 10.1016/j.bpj.2013.02.055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验