Link Kathryn G, Sorrells Matthew G, Danes Nicholas A, Neeves Keith B, Leiderman Karin, Fogelson Aaron L
Department of Mathematics, University of California, Davis, Davis, CA 95616 USA.
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401 USA.
Multiscale Model Simul. 2020;18(4):1489-1524. doi: 10.1137/20m1317785. Epub 2020 Nov 18.
We present the first mathematical model of flow-mediated primary hemostasis in an extravascular injury which can track the process from initial deposition to occlusion. The model consists of a system of ordinary differential equations (ODEs) that describe platelet aggregation (adhesion and cohesion), soluble-agonist-dependent platelet activation, and the flow of blood through the injury. The formation of platelet aggregates increases resistance to flow through the injury, which is modeled using the Stokes-Brinkman equations. Data from analogous experimental (microfluidic flow) and partial differential equation models informed parameter values used in the ODE model description of platelet adhesion, cohesion, and activation. This model predicts injury occlusion under a range of flow and platelet activation conditions. Simulations testing the effects of shear and activation rates resulted in delayed occlusion and aggregate heterogeneity. These results validate our hypothesis that flow-mediated dilution of activating chemical adenosine diphosphate hinders aggregate development. This novel modeling framework can be extended to include more mechanisms of platelet activation as well as the addition of the biochemical reactions of coagulation, resulting in a computationally efficient high throughput screening tool of primary and secondary hemostasis.
我们提出了首个血管外损伤中血流介导的初级止血数学模型,该模型能够追踪从初始沉积到阻塞的过程。该模型由一组常微分方程(ODEs)组成,这些方程描述了血小板聚集(黏附和凝聚)、可溶性激动剂依赖性血小板活化以及血液通过损伤部位的流动。血小板聚集体的形成增加了通过损伤部位的血流阻力,这是使用斯托克斯-布林克曼方程进行建模的。来自类似实验(微流体流动)和偏微分方程模型的数据为ODE模型中血小板黏附、凝聚和活化描述所使用的参数值提供了依据。该模型预测了在一系列血流和血小板活化条件下的损伤阻塞情况。测试剪切力和活化速率影响的模拟结果导致阻塞延迟和聚集体异质性。这些结果验证了我们的假设,即血流介导的激活化学物质二磷酸腺苷的稀释会阻碍聚集体的发展。这个新颖的建模框架可以扩展到包括更多血小板活化机制以及凝血生化反应,从而形成一个计算高效的初级和次级止血高通量筛选工具。