Suppr超能文献

Low-Rank Riemannian Optimization for Graph-Based Clustering Applications.

作者信息

Douik Ahmed, Hassibi Babak

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5133-5148. doi: 10.1109/TPAMI.2021.3074467. Epub 2022 Aug 4.

Abstract

With the abundance of data, machine learning applications engaged increased attention in the last decade. An attractive approach to robustify the statistical analysis is to preprocess the data through clustering. This paper develops a low-complexity Riemannian optimization framework for solving optimization problems on the set of positive semidefinite stochastic matrices. The low-complexity feature of the proposed algorithms stems from the factorization of the optimization variable X=YY and deriving conditions on the number of columns of Y under which the factorization yields a satisfactory solution. The paper further investigates the embedded and quotient geometries of the resulting Riemannian manifolds. In particular, the paper explicitly derives the tangent space, Riemannian gradients and Hessians, and a retraction operator allowing the design of efficient first and second-order optimization methods for the graph-based clustering applications of interest. The numerical results reveal that the resulting algorithms present a clear complexity advantage as compared with state-of-the-art euclidean and Riemannian approaches for graph clustering applications.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验