Suppr超能文献

根据病毒动力学模型估计,严重急性呼吸综合征冠状病毒2聚合酶链反应检测未能检出病例概率随时间的变化情况。

Time variation in the probability of failing to detect a case of polymerase chain reaction testing for SARS-CoV-2 as estimated from a viral dynamics model.

作者信息

Ejima Keisuke, Kim Kwang Su, Iwanami Shoya, Fujita Yasuhisa, Li Ming, Zoh Roger S, Aihara Kazuyuki, Miyazaki Taiga, Wakita Takaji, Iwami Shingo

机构信息

Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN 47405, USA.

Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.

出版信息

J R Soc Interface. 2021 Apr;18(177):20200947. doi: 10.1098/rsif.2020.0947. Epub 2021 Apr 21.

Abstract

Viral tests including polymerase chain reaction (PCR) tests are recommended to diagnose COVID-19 infection during the acute phase of infection. A test should have high sensitivity; however, the sensitivity of the PCR test is highly influenced by viral load, which changes over time. Because it is difficult to collect data before the onset of symptoms, the current literature on the sensitivity of the PCR test before symptom onset is limited. In this study, we used a viral dynamics model to track the probability of failing to detect a case of PCR testing over time, including the presymptomatic period. The model was parametrized by using longitudinal viral load data collected from 30 hospitalized patients. The probability of failing to detect a case decreased toward symptom onset, and the lowest probability was observed 2 days after symptom onset and increased afterwards. The probability on the day of symptom onset was 1.0% (95% CI: 0.5 to 1.9) and that 2 days before symptom onset was 60.2% (95% CI: 57.1 to 63.2). Our study suggests that the diagnosis of COVID-19 by PCR testing should be done carefully, especially when the test is performed before or way after symptom onset. Further study is needed of patient groups with potentially different viral dynamics, such as asymptomatic cases.

摘要

在感染急性期,建议使用包括聚合酶链反应(PCR)检测在内的病毒检测来诊断新冠病毒感染。检测应具有高灵敏度;然而,PCR检测的灵敏度受病毒载量的影响很大,而病毒载量会随时间变化。由于在症状出现前很难收集数据,目前关于症状出现前PCR检测灵敏度的文献有限。在本研究中,我们使用病毒动力学模型来追踪随时间推移未能检测出PCR检测病例的概率,包括症状出现前的时期。该模型通过使用从30名住院患者收集的纵向病毒载量数据进行参数化。未能检测出病例的概率在症状出现时降低,在症状出现后2天观察到最低概率,之后又升高。症状出现当天的概率为1.0%(95%置信区间:0.5至1.9),症状出现前2天的概率为60.2%(95%置信区间:57.1至63.2)。我们的研究表明,通过PCR检测诊断新冠病毒感染应谨慎进行,尤其是在症状出现前或出现后很久进行检测时。需要对具有潜在不同病毒动力学的患者群体,如无症状病例,进行进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a291/8086922/125c921c15d3/rsif20200947f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验