Suppr超能文献

大流行:历史上缓慢的“学习曲线”导致生物医学信息学和疫苗突破。

Pandemics: Historically Slow "Learning Curve" Leading to Biomedical Informatics and Vaccine Breakthroughs.

机构信息

Department of Computer Science, Rutgers University, USA.

出版信息

Yearb Med Inform. 2021 Aug;30(1):290-301. doi: 10.1055/s-0041-1726482. Epub 2021 Apr 21.

Abstract

BACKGROUND

The worldwide tragedy of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic vividly demonstrates just how inadequate mitigation and control of the spread of infectious diseases can be when faced with a new microorganism with unknown pathogenic effects. Responses by governments in charge of public health, and all other involved organizations, have proved largely wanting. Data infrastructure and the information and communication systems needed to deal with the pandemic have likewise not been up to the task. Nevertheless, after a year of the worldwide outbreak, hope arises from this being the first major pandemic event in history where genomic and related biosciences - relying on biomedical informatics - have been essential in decoding the viral sequence data and producing the mRNA and other biotechnologies that unexpectedly rapidly have led to investigation, design, development, and testing of useful vaccines. Medical informatics may also help support public health actions and clinical interventions - but scalability and impact will depend on overcoming ingrained human shortcomings to deal with complex socio-economic, political, and technological disruptions together with the many ethical challenges presented by pandemics.

OBJECTIVES

The principal goal is to review the history of biomedical information and healthcare practices related to past pandemics in order to illustrate just how exceptional and dependent on biomedical informatics are the recent scientific insights into human immune responses to viral infection, which are enabling rapid antiviral vaccine development and clinical management of severe cases - despite the many societal challenges ahead.

METHODS

This paper briefly reviews some of the key historical antecedents leading up to modern insights into epidemic and pandemic processes with their biomedical and healthcare information intended to guide practitioners, agencies, and the lay public in today's ongoing pandemic events.

CONCLUSIONS

Poor scientific understanding and excessively slow learning about infectious disease processes and mitigating behaviors have stymied effective treatment until the present time. Advances in insights about immune systems, genomes, proteomes, and all the other -omes, became a reality thanks to the key sequencing technologies and biomedical informatics that enabled the Human Genome Project, and only now, 20 years later, are having an impact in ameliorating devastating zoonotic infectious pandemics, including the present SARS-CoV-2 event through unprecedently rapid vaccine development. In the future these advances will hopefully also enable more targeted prevention and treatment of disease. However, past and present shortcomings of most of the COVID-19 pandemic responses illustrate just how difficult it is to persuade enough people - and especially political leaders - to adopt societally beneficial risk-avoidance behaviors and policies, even as these become better understood.

摘要

背景

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)大流行是一场全球性悲剧,生动地表明,当面对一种具有未知致病作用的新型微生物时,传染病传播的缓解和控制是多么不足。负责公共卫生的政府以及所有其他相关组织的反应在很大程度上都不尽如人意。数据基础设施以及应对大流行所需的信息和通信系统也同样无法胜任这项任务。然而,在全球爆发一年后,人们从这一历史上首次重大大流行事件中看到了希望,即基因组学和相关生物技术——依靠生物医学信息学——在解码病毒序列数据和产生意想不到的快速导致调查、设计、开发和测试有用疫苗的 mRNA 和其他生物技术方面发挥了至关重要的作用。医学信息学也可能有助于支持公共卫生行动和临床干预措施——但可扩展性和影响力将取决于克服根深蒂固的人类缺陷,共同应对复杂的社会经济、政治和技术干扰,以及大流行带来的许多伦理挑战。

目的

主要目标是回顾与过去大流行相关的生物医学信息和医疗保健实践的历史,以说明人类对病毒感染的免疫反应的最近科学见解是多么独特和依赖于生物医学信息学,这些见解正在使快速开发抗病毒疫苗和对严重病例进行临床管理成为可能——尽管未来还面临许多社会挑战。

方法

本文简要回顾了导致现代对流行病和大流行过程的见解的一些关键历史前因,以期为从业者、机构和公众在当今正在进行的大流行事件中提供指导。

结论

对传染病过程和缓解行为的科学理解不足以及学习速度过慢,一直阻碍着有效治疗的实施,直到现在。由于关键的测序技术和使人类基因组计划成为现实的生物医学信息学,对免疫系统、基因组、蛋白质组以及所有其他组学的深入了解成为现实,仅在 20 年后的现在,这些技术才开始对改善毁灭性人畜共患传染病大流行产生影响,包括目前的 SARS-CoV-2 事件,通过史无前例的快速疫苗开发。在未来,这些进展还有望使疾病的预防和治疗更有针对性。然而,过去和现在 COVID-19 大流行应对措施的缺点说明了让足够多的人——尤其是政治领导人——接受对社会有益的风险回避行为和政策是多么困难,即使这些行为和政策越来越被理解。

相似文献

1
Pandemics: Historically Slow "Learning Curve" Leading to Biomedical Informatics and Vaccine Breakthroughs.
Yearb Med Inform. 2021 Aug;30(1):290-301. doi: 10.1055/s-0041-1726482. Epub 2021 Apr 21.
2
Protection against severe infectious disease in the past.
Pathog Glob Health. 2021 May;115(3):151-167. doi: 10.1080/20477724.2021.1878443. Epub 2021 Feb 11.
3
Pandemic COVID-19 Joins History's Pandemic Legion.
mBio. 2020 May 29;11(3):e00812-20. doi: 10.1128/mBio.00812-20.
5
The Coming of Age of Nucleic Acid Vaccines during COVID-19.
mSystems. 2023 Apr 27;8(2):e0092822. doi: 10.1128/msystems.00928-22. Epub 2023 Mar 2.
6
A Centenary Tale of Two Pandemics: The 1918 Influenza Pandemic and COVID-19, Part II.
Am J Public Health. 2021 Jul;111(7):1267-1272. doi: 10.2105/AJPH.2021.306326. Epub 2021 Jun 10.
7
History of U.S. military contributions to the study of vaccines against infectious diseases.
Mil Med. 2005 Apr;170(4 Suppl):3-11. doi: 10.7205/milmed.170.4s.3.
8
Donald A. B. Lindberg: Inspiring Leader and Visionary in Biomedicine, Healthcare, and Informatics.
Yearb Med Inform. 2020 Aug;29(1):253-258. doi: 10.1055/s-0040-1701972. Epub 2020 Apr 17.
9
The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem.
J Biol Regul Homeost Agents. 2021 Jan-Feb;35(1):1-4. doi: 10.23812/21-3-E.
10
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
Trends in Population-Based Studies: Molecular and Digital Epidemiology (Review).
Sovrem Tekhnologii Med. 2022;14(4):60-70. doi: 10.17691/stm2022.14.4.07. Epub 2022 Jul 29.
2
Ethics in the History of Medical Informatics for Decision-Making: Early Challenges to Digital Health Goals.
Yearb Med Inform. 2022 Aug;31(1):317-322. doi: 10.1055/s-0042-1742491. Epub 2022 Jun 2.
4
Health Data, Information, and Knowledge Sharing for Addressing the COVID-19.
Yearb Med Inform. 2021 Aug;30(1):4-7. doi: 10.1055/s-0041-1726541. Epub 2021 Sep 3.

本文引用的文献

1
The new informatics of pandemic response: humanitarian technology, efficiency, and the subtle retreat of national agency.
J Int Humanit Action. 2018;3(1):8. doi: 10.1186/s41018-018-0036-5. Epub 2018 May 30.
3
Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.
N Engl J Med. 2021 Feb 4;384(5):403-416. doi: 10.1056/NEJMoa2035389. Epub 2020 Dec 30.
4
A critical assessment of proposed outbreaks of plague and other epidemic diseases in Ancient Egypt.
Int J Infect Dis. 2021 Feb;103:217-219. doi: 10.1016/j.ijid.2020.11.160. Epub 2020 Nov 20.
5
Vaccine wagers on coronavirus surface protein pay off.
Science. 2020 Nov 20;370(6519):894-895. doi: 10.1126/science.370.6519.894.
7
Ensemble learning for poor prognosis predictions: A case study on SARS-CoV-2.
J Am Med Inform Assoc. 2021 Mar 18;28(4):791-800. doi: 10.1093/jamia/ocaa295.
8
Precision population analytics: population management at the point-of-care.
J Am Med Inform Assoc. 2021 Mar 1;28(3):588-595. doi: 10.1093/jamia/ocaa247.
10
Undermining CDC.
Science. 2020 Oct 23;370(6515):394-399. doi: 10.1126/science.370.6515.394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验