Suppr超能文献

使用定量建模工具评估在低暴露水平下显示生物标志物与健康结果之间关联的流行病学研究中的药代动力学偏差。

Using quantitative modeling tools to assess pharmacokinetic bias in epidemiological studies showing associations between biomarkers and health outcomes at low exposures.

机构信息

ScitoVation, LLC, Research Triangle Park, NC, USA.

ScitoVation, LLC, Research Triangle Park, NC, USA.

出版信息

Environ Res. 2021 Jun;197:111183. doi: 10.1016/j.envres.2021.111183. Epub 2021 Apr 20.

Abstract

Biomarkers of exposure can be measured at lower and lower levels due to advances in analytical chemistry. Using these sensitive methods, some epidemiology studies report associations between biomarkers and health outcomes at biomarker levels much below those associated with effects in animal studies. While some of these low exposure associations may arise from increased sensitivity of humans compared with animals or from species-specific responses, toxicology studies with drugs, commodity chemicals and consumer products have not generally indicated significantly greater sensitivity of humans compared with test animals for most health outcomes. In some cases, these associations may be indicative of pharmacokinetic (PK) bias, i.e., a situation where a confounding factor or the health outcome itself alters pharmacokinetic processes affecting biomarker levels. Quantitative assessment of PK bias combines PK modeling and statistical methods describing outcomes across large numbers of individuals in simulated populations. Here, we first provide background on the types of PK models that can be used for assessing biomarker levels in human population and then outline a process for considering PK bias in studies intended to assess associations between biomarkers and health outcomes at low levels of exposure. After providing this background, we work through published examples where these PK methods have been applied with several chemicals/chemical classes - polychlorinated biphenyls (PCBs), perfluoroalkyl substances (PFAS), polybrominated biphenyl ethers (PBDE) and phthalates - to assess the possibility of PK bias. Studies of the health effects of low levels of exposure will be improved by developing some confidence that PK bias did not play significant roles in the observed associations.

摘要

由于分析化学的进步,暴露标志物的测量可以达到更低的水平。利用这些灵敏的方法,一些流行病学研究报告了生物标志物与健康结果之间的关联,这些关联发生在生物标志物水平远低于动物研究中与效应相关的水平。虽然这些低暴露关联中的一些可能是由于人类与动物相比具有更高的敏感性,或者是由于物种特异性反应引起的,但对药物、商品化学品和消费品的毒理学研究一般并未表明人类对大多数健康结果的敏感性明显高于试验动物。在某些情况下,这些关联可能表明存在药代动力学(PK)偏倚,即混杂因素或健康结果本身改变了影响生物标志物水平的药代动力学过程的情况。PK 偏倚的定量评估结合了 PK 建模和统计学方法,用于描述模拟人群中大量个体的结果。在这里,我们首先提供了可用于评估人群中生物标志物水平的 PK 模型类型的背景知识,然后概述了在旨在评估低暴露水平下生物标志物与健康结果之间关联的研究中考虑 PK 偏倚的过程。在提供了这个背景之后,我们通过已经应用于几种化学物质/化学类别的已发表的例子来解决这些 PK 方法,这些化学物质/化学类包括多氯联苯(PCBs)、全氟烷基物质(PFAS)、多溴联苯醚(PBDE)和邻苯二甲酸酯,以评估 PK 偏倚的可能性。通过开发一些信心,即 PK 偏倚在观察到的关联中没有发挥重要作用,将改善对低暴露水平健康影响的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验