Chen Kuan-Ting, Yang Yi-Chun, Yi Yuan-Hsing, Zheng Xiang-Ting, Tuan Hsing-Yu
Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
J Colloid Interface Sci. 2021 Sep 15;598:155-165. doi: 10.1016/j.jcis.2021.03.146. Epub 2021 Mar 29.
We reported that a stable carbon ink composed of conductive carbon materials (graphene and super P), binder (sodium carboxymethyl cellulose (CMC)), interface active agent (sodium dodecyl sulfate (SDS)), and metal coupling agent ((3-aminopropyl)triethoxysilane (APTES)) for using in coating conducting layer on cathode/anode current collector for LIBs. Graphene materials are obtained using a low-cost graphite material (KS 6) and processing it via a wet ball-milling to exfoliate single layers into the ink. The ink can be coated on the LIB current collector in a large area by a doctor blade to form a carbon layer of about 1 μm without overflow. Carbon-coated current collectors have amphiphilic properties, not peel off under extreme physical and chemical conditions, and resist oxidation under high temperature (200 °C) processing conditions. In addition, carbon-coated current collector are superior to the batteries using bare metal foil a current collectors in the LIB performance of graphite half-cell, graphite full-cell, LiFePO half-cell, and silicon-carbon full-cell. These results show that the carbon-coated metal foil can reduce the interface resistance with the active material and improves the adhesion of the active materials to the current collector, avoiding peeling off during charge/discharge process, thereby improving of LIBs performance. The developed method can produce high-quality, low-cost carbon material inks on a large scale through a simple and inexpensive process, and coat them evenly and finely on current collectors, making it possible to achieve efficient industrial and commercial perspectives for next-generation LIB-based current collectors.
我们报道了一种稳定的碳油墨,其由导电碳材料(石墨烯和超 P)、粘合剂(羧甲基纤维素钠(CMC))、界面活性剂(十二烷基硫酸钠(SDS))和金属偶联剂((3-氨丙基)三乙氧基硅烷(APTES))组成,用于在锂离子电池的阴极/阳极集流体上涂覆导电层。石墨烯材料是使用低成本的石墨材料(KS 6)通过湿球磨处理将其剥离成单层而制得的油墨。该油墨可通过刮刀大面积涂覆在锂离子电池集流体上,形成约 1μm 的碳层且不会溢出。碳包覆的集流体具有两亲性,在极端物理和化学条件下不会剥落,并且在高温(200°C)加工条件下抗氧化。此外,在石墨半电池、石墨全电池、磷酸铁锂半电池和硅碳全电池的锂离子电池性能方面,碳包覆的集流体优于使用裸金属箔作为集流体的电池。这些结果表明,碳包覆的金属箔可以降低与活性材料的界面电阻,并提高活性材料与集流体的附着力,避免在充放电过程中剥落,从而提高锂离子电池的性能。所开发的方法可以通过简单且廉价的工艺大规模生产高质量、低成本的碳材料油墨,并将它们均匀且精细地涂覆在集流体上,为下一代基于锂离子电池的集流体实现高效的工业和商业前景成为可能。