Suppr超能文献

用于多扫描心血管磁共振自动分析的深度学习管道。

A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance.

机构信息

Centre for Translational MR Research (TMR), National University of Singapore, Singapore, 117549, Singapore.

Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore.

出版信息

J Cardiovasc Magn Reson. 2021 Apr 26;23(1):47. doi: 10.1186/s12968-020-00695-z.

Abstract

BACKGROUND

Cardiovascular magnetic resonance (CMR) sequences are commonly used to obtain a complete description of the function and structure of the heart, provided that accurate measurements are extracted from images. New methods of extraction of information are being developed, among them, deep neural networks are powerful tools that showed the ability to perform fast and accurate segmentation. Iq1n order to reduce the time spent by reading physicians to process data and minimize intra- and inter-observer variability, we propose a fully automatic multi-scan CMR image analysis pipeline.

METHODS

Sequence specific U-Net 2D models were trained to perform the segmentation of the left ventricle (LV), right ventricle (RV) and aorta in cine short-axis, late gadolinium enhancement (LGE), native T1 map, post-contrast T1, native T2 map and aortic flow sequences depending on the need. The models were trained and tested on a set of data manually segmented by experts using semi-automatic and manual tools. A set of parameters were computed from the resulting segmentations such as the left ventricular and right ventricular ejection fraction (EF), LGE scar percentage, the mean T1, T1 post, T2 values within the myocardium, and aortic flow. The Dice similarity coefficient, Hausdorff distance, mean surface distance, and Pearson correlation coefficient R were used to assess and compare the results of the U-Net based pipeline with intra-observer variability. Additionally, the pipeline was validated on two clinical studies.

RESULTS

The sequence specific U-Net 2D models trained achieved fast (≤ 0.2 s/image on GPU) and precise segmentation over all the targeted region of interest with high Dice scores (= 0.91 for LV, = 0.92 for RV, = 0.93 for Aorta in average) comparable to intra-observer Dice scores (= 0.86 for LV, = 0.87 for RV, = 0.95 for aorta flow in average). The automatically and manually computed parameters were highly correlated (R = 0.91 in average) showing results superior to the intra-observer variability (R = 0.85 in average) for every sequence presented here.

CONCLUSION

The proposed pipeline allows for fast and robust analysis of large CMR studies while guaranteeing reproducibility, hence potentially improving patient's diagnosis as well as clinical studies outcome.

摘要

背景

心血管磁共振(CMR)序列常用于获取心脏功能和结构的完整描述,前提是从图像中提取出准确的测量值。目前正在开发新的信息提取方法,其中,深度神经网络是一种强大的工具,能够快速准确地进行分割。为了减少医生阅读数据的时间,减少数据处理时间,并最大程度地减少观察者内和观察者间的变异性,我们提出了一种全自动多扫描 CMR 图像分析管道。

方法

针对电影短轴、晚期钆增强(LGE)、原生 T1 图、对比后 T1、原生 T2 图和主动脉流序列,分别训练了基于序列的 U-Net 2D 模型,以实现左心室(LV)、右心室(RV)和主动脉的分割。这些模型是在一组由专家使用半自动和手动工具手动分割的数据上进行训练和测试的。从分割结果中计算出一组参数,例如左心室和右心室射血分数(EF)、LGE 疤痕百分比、心肌内平均 T1、T1 后、T2 值和主动脉流量。使用 Dice 相似系数、Hausdorff 距离、平均表面距离和 Pearson 相关系数 R 来评估和比较基于 U-Net 的管道与观察者内变异性的结果。此外,该管道还在两项临床研究中进行了验证。

结果

训练有素的基于序列的 U-Net 2D 模型能够快速(GPU 上≤0.2 秒/图像)且精确地分割所有目标感兴趣区域,Dice 评分高(LV 平均得分为 0.91,RV 平均得分为 0.92,主动脉平均得分为 0.93),与观察者内 Dice 评分相当(LV 平均得分为 0.86,RV 平均得分为 0.87,主动脉流量平均得分为 0.95)。自动和手动计算的参数高度相关(平均 R 值为 0.91),显示出优于此处呈现的每个序列的观察者内变异性(平均 R 值为 0.85)的结果。

结论

所提出的管道允许快速稳健地分析大型 CMR 研究,同时保证可重复性,从而有可能改善患者的诊断以及临床研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b683/8074440/7e5560c2ee3b/12968_2020_695_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验