Electrochemical Process Engineering (EPE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.
Central Instrumentation Facility (CIF), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.
Dalton Trans. 2021 Jun 1;50(21):7198-7211. doi: 10.1039/d1dt00653c.
The use of nanomaterials (NMs) in various applications via multidisciplinary approaches is highly necessary in this era. In this line, the impact of noble metals in organic media for both catalysis and surface-enhanced Raman spectroscopic (SERS) studies is most interesting and also has a wider scope in various fields. Nonetheless, the catalytic reduction of aromatic nitro compounds is difficult with poor solubility in aqueous media, and reduction also is less feasible in the absence of noble metal-based catalysts. Thus, the choice of noble metal-based catalysts for the catalytic reduction of nitro compounds in organic media is one of the emerging methods with high selectivity towards products. Moreover, the superior catalytic activity of Pt NPs provides a higher rate constant value with a low dielectric constant of organic solvents. Herein, for the first time, we synthesised highly stable metallic Pt nanoparticles (NPs) anchored on bio-scaffold deoxyribonucleic acid (DNA) for two different applications. The advantage of highly controlled nucleation of NPs over DNA in organic media results in a spherical morphology with a particle diameter of 2.47 ± 2.11 nm and 2.84 ± 1.14 nm. A stable colloidal solution of Pt NPs was prepared by a simple wet chemical sodium borohydride reduction method within 15 minutes from the start of the reaction. Two sets of Pt NPs were synthesised by varying the molar ratio of the concentration of DNA to PtCl4 concentration and were named Pt@DNA (0.05 M) and Pt@DNA (0.06 M), respectively. The prepared Pt@DNA was effectively studied for two potential applications such as the SERS studies and catalytic reduction of nitro compounds. In catalysis, a higher catalytic rate was observed in the case of 4-nitrophenol (4-NP) at a rate of 8.43 × 10-2 min-1. In the SERS study, the reduction of the interparticle distance to below 5 nm facilitates the creation of a large number of hot spots for probe detection. Here, we used 10-3 M methylene blue (MB) as a probe molecule, and the enhancement factor (EF) value was calculated at different concentrations ranging from 10-3 M to 10-6 M. The highest enhancement factor (EF) value obtained was 2.91 × 105 for Pt@DNA (0.05 M). The as-synthesised stable Pt@DNA organosol can be exploited for other potential applications related to energy, sensor and medicinal fields in the near future.
在这个时代,通过多学科的方法在各种应用中使用纳米材料(NMs)是非常必要的。在这方面,贵金属在有机介质中的催化和表面增强拉曼光谱(SERS)研究的影响是最有趣的,并且在各个领域也有更广泛的应用。然而,芳香族硝基化合物在水中的溶解度差,还原也不太可行,如果没有贵金属基催化剂的话。因此,选择贵金属基催化剂用于有机介质中硝基化合物的催化还原是一种具有高选择性产物的新兴方法之一。此外,Pt NPs 的优越催化活性提供了更高的速率常数值和较低的有机溶剂介电常数。在这里,我们首次合成了高度稳定的负载在生物支架脱氧核糖核酸(DNA)上的金属 Pt 纳米粒子(NPs),用于两种不同的应用。在有机介质中通过 DNA 高度控制纳米粒子的成核,得到了具有 2.47 ± 2.11nm 和 2.84 ± 1.14nm 粒径的球形形貌。通过简单的湿化学硼氢化钠还原法,在反应开始后 15 分钟内即可制备出 Pt NPs 的稳定胶体溶液。通过改变 DNA 与 PtCl4 浓度的摩尔比,合成了两组 Pt NPs,并分别命名为 Pt@DNA(0.05 M)和 Pt@DNA(0.06 M)。所制备的 Pt@DNA 有效地用于两种潜在的应用,如 SERS 研究和硝基化合物的催化还原。在催化方面,在 4-硝基苯酚(4-NP)的情况下,观察到更高的催化速率,为 8.43×10-2 min-1。在 SERS 研究中,将颗粒间的距离减小到 5nm 以下,有利于创建大量用于探测的热点。在这里,我们使用 10-3 M 亚甲蓝(MB)作为探针分子,并计算了从 10-3 M 到 10-6 M 不同浓度下的增强因子(EF)值。得到的最高增强因子(EF)值为 2.91×105,对于 Pt@DNA(0.05 M)。合成的稳定的 Pt@DNA 有机溶胶可以在不久的将来用于与能源、传感器和医药领域相关的其他潜在应用。