Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
J Radiat Res. 2021 May 12;62(3):483-493. doi: 10.1093/jrr/rrab011.
We developed a confidence interval-(CI) assessing model in multivariable normal tissue complication probability (NTCP) modeling for predicting radiation-induced liver disease (RILD) in primary liver cancer patients using clinical and dosimetric data. Both the mean NTCP and difference in the mean NTCP (ΔNTCP) between two treatment plans of different radiotherapy modalities were further evaluated and their CIs were assessed. Clinical data were retrospectively reviewed in 322 patients with hepatocellular carcinoma (n = 215) and intrahepatic cholangiocarcinoma (n = 107) treated with photon therapy. Dose-volume histograms of normal liver were reduced to mean liver dose (MLD) based on the fraction size-adjusted equivalent uniform dose. The most predictive variables were used to build the model based on multivariable logistic regression analysis with bootstrapping. Internal validation was performed using the cross-validation leave-one-out method. Both the mean NTCP and the mean ΔNTCP with 95% CIs were calculated from computationally generated multivariate random sets of NTCP model parameters using variance-covariance matrix information. RILD occurred in 108/322 patients (33.5%). The NTCP model with three clinical and one dosimetric parameter (tumor type, Child-Pugh class, hepatitis infection status and MLD) was most predictive, with an area under the receiver operative characteristics curve (AUC) of 0.79 (95% CI 0.74-0.84). In eight clinical subgroups based on the three clinical parameters, both the mean NTCP and the mean ΔNTCP with 95% CIs were able to be estimated computationally. The multivariable NTCP model with the assessment of 95% CIs has potential to improve the reliability of the NTCP model-based approach to select the appropriate radiotherapy modality for each patient.
我们开发了一种置信区间(CI)评估模型,用于多变量正常组织并发症概率(NTCP)建模,以预测原发性肝癌患者的放射性肝损伤(RILD),使用临床和剂量学数据。进一步评估了两种不同放射治疗模式的两种治疗计划之间的平均 NTCP 和平均 NTCP 差异(ΔNTCP),并评估了它们的置信区间。回顾性分析了 322 例接受光子治疗的肝细胞癌(n=215)和肝内胆管癌(n=107)患者的临床数据。根据分次大小调整的等效均匀剂量,将正常肝脏的剂量-体积直方图简化为平均肝剂量(MLD)。使用基于 Bootstrap 的多变量逻辑回归分析,选择最具预测性的变量构建模型。内部验证采用交叉验证的留一法进行。使用计算生成的 NTCP 模型参数的多变量随机集,根据方差-协方差矩阵信息计算平均 NTCP 和平均ΔNTCP 的 95%置信区间。在 322 例患者中,有 108 例(33.5%)发生 RILD。具有三个临床和一个剂量学参数(肿瘤类型、Child-Pugh 分级、肝炎感染状况和 MLD)的 NTCP 模型最具预测性,其受试者工作特征曲线(ROC)下面积(AUC)为 0.79(95%CI 0.74-0.84)。在基于三个临床参数的八个临床亚组中,都可以计算出具有 95%置信区间的平均 NTCP 和平均ΔNTCP。具有 95%置信区间评估的多变量 NTCP 模型有可能提高基于 NTCP 模型的方法选择合适放疗方式的可靠性。