Xi Long, Zhao Yan, Chen Long, Gao Qing Hong, Tang Wen, Wan Tao Ruan, Xue Tao
Bournemouth University, Poole, Dorset BH12 5BB, UK.
Lyft Level 5, London EC2A 3AH, UK.
Comput Methods Programs Biomed. 2021 Jun;205:106077. doi: 10.1016/j.cmpb.2021.106077. Epub 2021 Apr 3.
Recovering high-quality 3D point clouds from monocular endoscopic images is a challenging task. This paper proposes a novel deep learning-based computational framework for 3D point cloud reconstruction from single monocular endoscopic images.
An unsupervised mono-depth learning network is used to generate depth information from monocular images. Given a single mono endoscopic image, the network is capable of depicting a depth map. The depth map is then used to recover a dense 3D point cloud. A generative Endo-AE network based on an auto-encoder is trained to repair defects of the dense point cloud by generating the best representation from the incomplete data. The performance of the proposed framework is evaluated against state-of-the-art learning-based methods. The results are also compared with non-learning based stereo 3D reconstruction algorithms.
Our proposed methods outperform both the state-of-the-art learning-based and non-learning based methods for 3D point cloud reconstruction. The Endo-AE model for point cloud completion can generate high-quality, dense 3D endoscopic point clouds from incomplete point clouds with holes. Our framework is able to recover complete 3D point clouds with the missing rate of information up to 60%. Five large medical in-vivo databases of 3D point clouds of real endoscopic scenes have been generated and two synthetic 3D medical datasets are created. We have made these datasets publicly available for researchers free of charge.
The proposed computational framework can produce high-quality and dense 3D point clouds from single mono-endoscopy images for augmented reality, virtual reality and other computer-mediated medical applications.
从单目内镜图像中恢复高质量的三维点云是一项具有挑战性的任务。本文提出了一种基于深度学习的新型计算框架,用于从单目内镜图像重建三维点云。
使用无监督单目深度学习网络从单目图像生成深度信息。给定一张单目内镜图像,该网络能够描绘出深度图。然后利用深度图恢复密集的三维点云。基于自动编码器的生成式Endo-AE网络经过训练,通过从不完整数据中生成最佳表示来修复密集点云的缺陷。将所提出框架的性能与基于学习的最新方法进行评估。结果还与基于非学习的立体三维重建算法进行了比较。
我们提出的方法在三维点云重建方面优于基于学习的最新方法和基于非学习的方法。用于点云补全的Endo-AE模型能够从不完整的带孔点云中生成高质量、密集的三维内镜点云。我们的框架能够恢复完整的三维点云,信息缺失率高达60%。已经生成了五个真实内镜场景的大型三维点云医学体内数据库,并创建了两个合成三维医学数据集。我们已将这些数据集免费公开提供给研究人员。
所提出的计算框架能够从单目内镜图像中生成高质量、密集的三维点云,用于增强现实、虚拟现实和其他计算机辅助医疗应用。