Suppr超能文献

一种基于离散小波变换和长短期记忆网络的区域一氧化氮浓度预测新方法。

A Novel Method for Regional NO Concentration Prediction Using Discrete Wavelet Transform and an LSTM Network.

作者信息

Liu Bingchun, Zhang Lei, Wang Qingshan, Chen Jiali

机构信息

School of Management, Tianjin University of Technology, Tianjin 300384, China.

School of Humanities, Tianjin Agricultural University, Tianjin 300384, China.

出版信息

Comput Intell Neurosci. 2021 Apr 7;2021:6631614. doi: 10.1155/2021/6631614. eCollection 2021.

Abstract

Achieving accurate predictions of urban NO concentration is essential for effectively control of air pollution. This paper selected the concentration of NO in Tianjin as the research object, concentrating predicting model based on Discrete Wavelet Transform and Long- and Short-Term Memory network (DWT-LSTM) for predicting daily average NO concentration. Five major atmospheric pollutants, key meteorological data, and historical data were selected as the input indexes, realizing the effective prediction of NO concentration in the next day. Firstly, the input data were decomposed by Discrete Wavelet Transform to increase the data dimension. Furthermore, the LSTM network model was used to learn the features of the decomposed data. Ultimately, Support Vector Regression (SVR), Gated Regression Unit (GRU), and single LSTM model were selected as comparison models, and each performance was evaluated by the Mean Absolute Percentage Error (MAPE). The results show that the DWT-LSTM model constructed in this paper can improve the accuracy and generalization ability of data mining by decomposing the input data into multiple components. Compared with the other three methods, the model structure is more suitable for predicting NO concentration in Tianjin.

摘要

实现对城市一氧化氮(NO)浓度的准确预测对于有效控制空气污染至关重要。本文选取天津市的NO浓度作为研究对象,构建基于离散小波变换(Discrete Wavelet Transform)和长短时记忆网络(Long- and Short-Term Memory network,DWT-LSTM)的浓度预测模型,用于预测日平均NO浓度。选取五项主要大气污染物、关键气象数据以及历史数据作为输入指标,实现对次日NO浓度的有效预测。首先,通过离散小波变换对输入数据进行分解以增加数据维度。此外,利用长短时记忆网络模型学习分解后的数据特征。最终,选取支持向量回归(Support Vector Regression,SVR)、门控回归单元(Gated Regression Unit,GRU)以及单长短时记忆网络模型作为对比模型,并通过平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)对各项性能进行评估。结果表明,本文构建的离散小波变换-长短时记忆网络模型通过将输入数据分解为多个分量,能够提高数据挖掘精度和泛化能力。与其他三种方法相比,该模型结构更适合预测天津市的NO浓度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20e1/8049823/3d3b9a3c08ef/CIN2021-6631614.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验