Suppr超能文献

基于深度学习卷积神经网络-长短期记忆模型估计梯形重叠核脉冲参数

Estimation of trapezoidal-shaped overlapping nuclear pulse parameters based on a deep learning CNN-LSTM model.

作者信息

Ma Xing Ke, Huang Hong Quan, Ji Xiao, Dai He Ye, Wu Jun Hong, Zhao Jing, Yang Fei, Tang Lin, Jiang Kai Ming, Ding Wei Cheng, Zhou Wei

机构信息

College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Dongsanlu, Erxianqiao, Chengdu 610059, People's Republic of China.

College of Foreign Language, Shanghai Maritime University, Haigang Avenue, Shanghai 201306, People's Republic of China.

出版信息

J Synchrotron Radiat. 2021 May 1;28(Pt 3):910-918. doi: 10.1107/S1600577521003441. Epub 2021 Apr 19.

Abstract

The Long Short-Term Memory neural network (LSTM) has excellent learning ability for the time series of the nuclear pulse signal. It can accurately estimate the parameters (such as amplitude, time constant, etc.) of the digitally shaped nuclear pulse signal (especially the overlapping pulse signal). However, due to the large number of pulse sequences, the direct use of these sequences as samples to train the LSTM increases the complexity of the network, resulting in a lower training efficiency of the model. The convolution neural network (CNN) can effectively extract the sequence samples by using its unique convolution kernel structure, thus greatly reducing the number of sequence samples. Therefore, the CNN-LSTM deep neural network is used to estimate the parameters of overlapping pulse signals after digital trapezoidal shaping of exponential signals. Firstly, the estimation of the trapezoidal overlapping nuclear pulse is considered to be obtained after the superposition of multiple exponential nuclear pulses followed by trapezoidal shaping. Then, a data set containing multiple samples is set up; each sample is composed of the sequence of sampling values of the trapezoidal overlapping nuclear pulse and the set of shaping parameters of the exponential pulse before digital shaping. Secondly, the CNN is used to extract the abstract features of the training set in these samples, and then these abstract features are applied to the training of the LSTM model. In the training process, the pulse parameter set estimated by the present neural network is calculated by forward propagation. Thirdly, the loss function is used to calculate the loss value between the estimated pulse parameter set and the actual pulse parameter set. Finally, a gradient-based optimization algorithm is applied to update the weight by getting back the loss value together with the gradient of the loss function to the network, so as to realize the purpose of training the network. After model training was completed, the sampled values of the trapezoidal overlapping nuclear pulse were used as input to the CNN-LSTM model to obtain the required parameter set from the output of the CNN-LSTM model. The experimental results show that this method can effectively overcome the shortcomings of local convergence of traditional methods and greatly save the time of model training. At the same time, it can accurately estimate multiple trapezoidal overlapping pulses due to the wide width of the flat top, thus realizing the optimal estimation of nuclear pulse parameters in a global sense, which is a good pulse parameter estimation method.

摘要

长短期记忆神经网络(LSTM)对核脉冲信号的时间序列具有出色的学习能力。它能够准确估计数字整形核脉冲信号(尤其是重叠脉冲信号)的参数(如幅度、时间常数等)。然而,由于脉冲序列数量众多,直接将这些序列作为样本训练LSTM会增加网络的复杂度,导致模型的训练效率较低。卷积神经网络(CNN)可以利用其独特的卷积核结构有效地提取序列样本,从而大大减少序列样本的数量。因此,采用CNN-LSTM深度神经网络来估计指数信号数字梯形整形后的重叠脉冲信号参数。首先,考虑梯形重叠核脉冲的估计是在多个指数核脉冲叠加后进行梯形整形得到的。然后,建立一个包含多个样本的数据集;每个样本由梯形重叠核脉冲的采样值序列和数字整形前指数脉冲的整形参数集组成。其次,利用CNN提取这些样本中训练集的抽象特征,然后将这些抽象特征应用于LSTM模型的训练。在训练过程中,通过前向传播计算当前神经网络估计的脉冲参数集。第三,使用损失函数计算估计的脉冲参数集与实际脉冲参数集之间的损失值。最后,应用基于梯度的优化算法通过将损失值与损失函数对网络的梯度一起返回来回更新权重,从而实现训练网络的目的。模型训练完成后,将梯形重叠核脉冲的采样值作为CNN-LSTM模型的输入,从CNN-LSTM模型的输出中获得所需的参数集。实验结果表明,该方法能够有效克服传统方法局部收敛的缺点,大大节省模型训练时间。同时,由于平顶宽度较宽,它能够准确估计多个梯形重叠脉冲,从而在全局意义上实现核脉冲参数的最优估计,是一种良好的脉冲参数估计方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验