Suppr超能文献

关于断层成像重建中的幻觉。

On Hallucinations in Tomographic Image Reconstruction.

出版信息

IEEE Trans Med Imaging. 2021 Nov;40(11):3249-3260. doi: 10.1109/TMI.2021.3077857. Epub 2021 Oct 27.

Abstract

Tomographic image reconstruction is generally an ill-posed linear inverse problem. Such ill-posed inverse problems are typically regularized using prior knowledge of the sought-after object property. Recently, deep neural networks have been actively investigated for regularizing image reconstruction problems by learning a prior for the object properties from training images. However, an analysis of the prior information learned by these deep networks and their ability to generalize to data that may lie outside the training distribution is still being explored. An inaccurate prior might lead to false structures being hallucinated in the reconstructed image and that is a cause for serious concern in medical imaging. In this work, we propose to illustrate the effect of the prior imposed by a reconstruction method by decomposing the image estimate into generalized measurement and null components. The concept of a hallucination map is introduced for the general purpose of understanding the effect of the prior in regularized reconstruction methods. Numerical studies are conducted corresponding to a stylized tomographic imaging modality. The behavior of different reconstruction methods under the proposed formalism is discussed with the help of the numerical studies.

摘要

断层图像重建通常是一个不适定的线性反问题。对于这种不适定的反问题,通常可以通过利用目标属性的先验知识进行正则化来解决。最近,人们积极研究深度神经网络,通过从训练图像中学习对象属性的先验知识来正则化图像重建问题。然而,这些深度网络所学习的先验信息及其对可能不在训练分布范围内的数据进行泛化的能力仍在探索之中。不准确的先验可能导致在重建图像中产生虚假结构,这在医学成像中是一个严重的问题。在这项工作中,我们建议通过将图像估计分解为广义测量和零分量,来说明重建方法所施加的先验的影响。引入了幻觉图的概念,以便于理解正则化重建方法中的先验的作用。针对一种风格化的层析成像模式进行了数值研究。借助数值研究讨论了不同重建方法在提出的形式下的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd9b/8673588/6da19cbd7562/nihms-1751927-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验