Suppr超能文献

间期棘波网络预测耐药性局灶性癫痫患者的手术疗效。

Interictal spike networks predict surgical outcome in patients with drug-resistant focal epilepsy.

机构信息

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.

Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada.

出版信息

Ann Clin Transl Neurol. 2021 Jun;8(6):1212-1223. doi: 10.1002/acn3.51337. Epub 2021 May 5.

Abstract

OBJECTIVE

To determine if properties of epileptic networks could be delineated using interictal spike propagation seen on stereo-electroencephalography (SEEG) and if these properties could predict surgical outcome in patients with drug-resistant epilepsy.

METHODS

We studied the SEEG of 45 consecutive drug-resistant epilepsy patients who underwent subsequent epilepsy surgery: 18 patients with good post-surgical outcome (Engel I) and 27 with poor outcome (Engel II-IV). Epileptic networks were derived from interictal spike propagation; these networks described the generation and propagation of interictal epileptic activity. We compared the regions in which spikes were frequent and the regions responsible for generating spikes to the area of resection and post-surgical outcome. We developed a measure termed source spike concordance, which integrates information about both spike rate and region of spike generation.

RESULTS

Inclusion in the resection of regions with high spike rate is associated with good post-surgical outcome (sensitivity = 0.82, specificity = 0.73). Inclusion in the resection of the regions responsible for generating interictal epileptic activity independently of rate is also associated with good post-surgical outcome (sensitivity = 0.88, specificity = 0.82). Finally, when integrating the spike rate and the generators, we find that the source spike concordance measure has strong predictability (sensitivity = 0.91, specificity = 0.94).

INTERPRETATIONS

Epileptic networks derived from interictal spikes can determine the generators of epileptic activity. Inclusion of the most active generators in the resection is strongly associated with good post-surgical outcome. These epileptic networks may aid clinicians in determining the area of resection during pre-surgical evaluation.

摘要

目的

确定是否可以使用立体脑电图 (SEEG) 上观察到的发作间期棘波传播来描绘癫痫网络的特性,以及这些特性是否可以预测耐药性癫痫患者的手术结果。

方法

我们研究了 45 例连续接受耐药性癫痫手术的患者的 SEEG:18 例患者术后结果良好 (Engel I),27 例患者术后结果不佳 (Engel II-IV)。癫痫网络源自发作间期棘波传播;这些网络描述了发作间期癫痫活动的产生和传播。我们比较了棘波频繁出现的区域和产生棘波的区域与切除区域和术后结果。我们开发了一种称为源棘波一致性的度量标准,它整合了关于棘波率和棘波产生区域的信息。

结果

包括高棘波率区域的切除与术后结果良好相关(敏感性为 0.82,特异性为 0.73)。包括与率无关的产生发作间期癫痫活动的区域的切除也与术后结果良好相关(敏感性为 0.88,特异性为 0.82)。最后,当整合棘波率和发生器时,我们发现源棘波一致性度量具有很强的预测性(敏感性为 0.91,特异性为 0.94)。

解释

从发作间期棘波中得出的癫痫网络可以确定癫痫活动的发生器。将最活跃的发生器纳入切除范围与术后结果良好密切相关。这些癫痫网络可能有助于临床医生在术前评估中确定切除区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c3d/8164864/7deb1ff9e2cb/ACN3-8-1212-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验