Suppr超能文献

揭示和分类驱动节点在复杂网络控制中的作用。

Uncovering and classifying the role of driven nodes in control of complex networks.

机构信息

Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan.

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan.

出版信息

Sci Rep. 2021 May 5;11(1):9627. doi: 10.1038/s41598-021-88295-4.

Abstract

The widely used Maximum Matching (MM) method identifies the minimum driver nodes set to control biological and technological systems. Nevertheless, it is assumed in the MM approach that one driver node can send control signal to multiple target nodes, which might not be appropriate in certain complex networks. A recent work introduced a constraint that one driver node can control one target node, and proposed a method to identify the minimum target nodes set under such a constraint. We refer such target nodes to driven nodes. However, the driven nodes may not be uniquely determined. Here, we develop a novel algorithm to classify driven nodes in control categories. Our computational analysis on a large number of biological networks indicates that the number of driven nodes is considerably larger than the number of driver nodes, not only in all examined complete plant metabolic networks but also in several key human pathways, which firstly demonstrate the importance of use of driven nodes in analysis of real-world networks.

摘要

广泛使用的最大匹配(MM)方法确定了控制生物和技术系统的最小驱动节点集。然而,在 MM 方法中假设一个驱动节点可以向多个目标节点发送控制信号,这在某些复杂网络中可能不合适。最近的一项工作引入了一个约束条件,即一个驱动节点只能控制一个目标节点,并提出了一种在这种约束条件下识别最小目标节点集的方法。我们将这些目标节点称为被驱动节点。然而,被驱动节点可能不是唯一确定的。在这里,我们开发了一种新的算法来对控制类别中的被驱动节点进行分类。我们在大量生物网络上的计算分析表明,被驱动节点的数量远远大于驱动节点的数量,这不仅在所有检查的完整植物代谢网络中,而且在几个关键的人类途径中都是如此,这首先证明了在分析实际网络时使用被驱动节点的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a8f/8100151/f2d8530a72dc/41598_2021_88295_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验