Suppr超能文献

EMNUSS:一种用于冷冻电镜映射中二级结构注释的深度学习框架。

EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps.

机构信息

School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab156.

Abstract

Cryo-electron microscopy (cryo-EM) has become one of important experimental methods in structure determination. However, despite the rapid growth in the number of deposited cryo-EM maps motivated by advances in microscopy instruments and image processing algorithms, building accurate structure models for cryo-EM maps remains a challenge. Protein secondary structure information, which can be extracted from EM maps, is beneficial for cryo-EM structure modeling. Here, we present a novel secondary structure annotation framework for cryo-EM maps at both intermediate and high resolutions, named EMNUSS. EMNUSS adopts a three-dimensional (3D) nested U-net architecture to assign secondary structures for EM maps. Tested on three diverse datasets including simulated maps, middle resolution experimental maps, and high-resolution experimental maps, EMNUSS demonstrated its accuracy and robustness in identifying the secondary structures for cyro-EM maps of various resolutions. The EMNUSS program is freely available at http://huanglab.phys.hust.edu.cn/EMNUSS.

摘要

低温电子显微镜(cryo-EM)已成为结构测定的重要实验方法之一。然而,尽管显微镜仪器和图像处理算法的进步促使更多的低温电镜图谱被收录,但为低温电镜图谱构建准确的结构模型仍然是一个挑战。从 EM 图谱中提取的蛋白质二级结构信息有助于低温电镜结构建模。在这里,我们提出了一种新的中高分辨率低温电镜图谱的二级结构注释框架,命名为 EMNUSS。EMNUSS 采用三维(3D)嵌套 U-net 架构为 EM 图谱分配二级结构。在包括模拟图谱、中分辨率实验图谱和高分辨率实验图谱在内的三个不同数据集上进行测试,EMNUSS 在识别各种分辨率的低温电镜图谱的二级结构方面表现出了准确性和鲁棒性。EMNUSS 程序可在 http://huanglab.phys.hust.edu.cn/EMNUSS 上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c96/8574626/e6db7f7608cf/bbab156f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验