Suppr超能文献

来自等离子体阿基米德螺旋线的螺线管光学力。

Solenoidal optical forces from a plasmonic Archimedean spiral.

作者信息

Zaman Mohammad Asif, Padhy Punnag, Hesselink Lambertus

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Phys Rev A (Coll Park). 2019 Jul;100(1). doi: 10.1103/physreva.100.013857. Epub 2019 Jul 31.

Abstract

The optical forces generated by a right-handed plasmonic Archimedean spiral (PAS) have been mapped and analyzed. By changing the handedness of the circularly polarized excitation, the structure can switch from a trapping force profile to a rotating force profile. The Helmholtz-Hodge decomposition method has been used to separate the solenoidal component and the conservative component of the force and quantify their relative magnitude. It is shown that the for right-hand circularly polarized excitation, the PAS creates a significant amount of solenoidal forces. Using the decomposed force components, an intuitive explanation of the motion of micro- and nanoparticles in the force field is presented. Vector field topology is used to visualize the force components. The analysis is found to be consistent with numerical and experimental results. Due to the intuitive nature of the analysis, it can be used in the initial design process of complex laboratory-on-a-chip systems where a rigorous analysis is computationally expensive.

摘要

已对由右手等离子体阿基米德螺旋(PAS)产生的光学力进行了映射和分析。通过改变圆偏振激发的手性,该结构可以从捕获力分布切换到旋转力分布。亥姆霍兹 - 霍奇分解方法已被用于分离力的螺线管分量和保守分量,并量化它们的相对大小。结果表明,对于右手圆偏振激发,PAS会产生大量的螺线管力。利用分解后的力分量,对微纳米粒子在力场中的运动给出了直观解释。矢量场拓扑用于可视化力分量。分析结果与数值和实验结果一致。由于该分析具有直观性,它可用于复杂的芯片实验室系统的初始设计过程,在这种情况下,严格的分析在计算上成本很高。

相似文献

1
Solenoidal optical forces from a plasmonic Archimedean spiral.
Phys Rev A (Coll Park). 2019 Jul;100(1). doi: 10.1103/physreva.100.013857. Epub 2019 Jul 31.
2
Near-field optical trapping in a non-conservative force field.
Sci Rep. 2019 Jan 24;9(1):649. doi: 10.1038/s41598-018-36653-0.
3
Selective plasmonic trapping of nano-particles by Archimedes metalens.
Opt Express. 2023 Oct 9;31(21):35354-35362. doi: 10.1364/OE.497015.
5
Nanoscopic control and quantification of enantioselective optical forces.
Nat Nanotechnol. 2017 Nov;12(11):1055-1059. doi: 10.1038/nnano.2017.180. Epub 2017 Sep 25.
7
Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna.
Opt Lett. 2011 Dec 1;36(23):4533-5. doi: 10.1364/OL.36.004533.
8
Helmholtz Hodge decomposition of scalar optical fields.
J Opt Soc Am A Opt Image Sci Vis. 2012 Nov 1;29(11):2421-7. doi: 10.1364/JOSAA.29.002421.
9
Internal energy flows of coma-affected singular beams in low-numerical-aperture systems.
J Opt Soc Am A Opt Image Sci Vis. 2015 Apr 1;32(4):514-21. doi: 10.1364/JOSAA.32.000514.
10
Focal plane internal energy flows of singular beams in astigmatically aberrated low numerical aperture systems.
J Opt Soc Am A Opt Image Sci Vis. 2014 Sep 1;31(9):2046-54. doi: 10.1364/JOSAA.31.002046.

引用本文的文献

1
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications.
Micromachines (Basel). 2025 Aug 13;16(8):933. doi: 10.3390/mi16080933.
2
Temporally deuterogenic plasmonic vortices.
Nanophotonics. 2024 Feb 21;13(6):955-963. doi: 10.1515/nanoph-2023-0931. eCollection 2024 Mar.
3
Polarization-Addressable Optical Movement of Plasmonic Nanoparticles and Hotspot Spin Vortices.
Nanomaterials (Basel). 2024 May 9;14(10):829. doi: 10.3390/nano14100829.
6
Surface Plasmon-Enhanced Photoelectrochemical Sensor Based on Au Modified TiO Nanotubes.
Nanomaterials (Basel). 2022 Jun 15;12(12):2058. doi: 10.3390/nano12122058.
7
Surface Plasmon Resonance of Large-Size Ag Nanobars.
Micromachines (Basel). 2022 Apr 18;13(4):638. doi: 10.3390/mi13040638.
8
Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens.
Biosensors (Basel). 2022 Mar 17;12(3):180. doi: 10.3390/bios12030180.
9
Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review.
Sensors (Basel). 2021 Dec 25;22(1):133. doi: 10.3390/s22010133.
10
The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip.
Micromachines (Basel). 2021 Nov 28;12(12):1467. doi: 10.3390/mi12121467.

本文引用的文献

1
Microparticle transport along a planar electrode array using moving dielectrophoresis.
J Appl Phys. 2021 Jul 21;130(3):034902. doi: 10.1063/5.0049126. Epub 2021 Jul 20.
2
In-plane near-field optical barrier on a chip.
Opt Lett. 2019 Apr 15;44(8):2061-2064. doi: 10.1364/OL.44.002061.
3
Near-field optical trapping in a non-conservative force field.
Sci Rep. 2019 Jan 24;9(1):649. doi: 10.1038/s41598-018-36653-0.
5
Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer.
Nat Nanotechnol. 2016 Jan;11(1):53-9. doi: 10.1038/nnano.2015.248. Epub 2015 Nov 2.
6
Tailoring optical complex field with spiral blade plasmonic vortex lens.
Sci Rep. 2015 Sep 3;5:13732. doi: 10.1038/srep13732.
7
Creating optical near-field orbital angular momentum in a gold metasurface.
Nano Lett. 2015 Apr 8;15(4):2746-50. doi: 10.1021/acs.nanolett.5b00601. Epub 2015 Mar 24.
8
Generating far-field orbital angular momenta from near-field optical chirality.
Phys Rev Lett. 2013 May 17;110(20):203906. doi: 10.1103/PhysRevLett.110.203906. Epub 2013 May 16.
9
Nano-optical conveyor belt, part I: Theory.
Nano Lett. 2014 Jun 11;14(6):2965-70. doi: 10.1021/nl404011s. Epub 2014 May 13.
10
Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps.
Nano Lett. 2014 Jun 11;14(6):2971-6. doi: 10.1021/nl404045n. Epub 2014 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验