Suppr超能文献

疟原虫血红素解毒:抗疟药物研发的新靶点

Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development.

机构信息

Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag, Matieland 7600, South Africa.

Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa.

出版信息

Acc Chem Res. 2021 Jun 1;54(11):2649-2659. doi: 10.1021/acs.accounts.1c00154. Epub 2021 May 13.

Abstract

Over the last century, malaria deaths have decreased by more than 85%. Nonetheless, there were 405 000 deaths in 2018, mostly resulting from infection. In the 21st century, much of the advance has arisen from the deployment of insecticide-treated bed nets and artemisinin combination therapy. However, over the past few decades parasites with a delayed artemisinin clearance phenotype have appeared in Southeast Asia, threatening further gains. The effort to find new drugs is thus urgent. A prominent process in blood stage malaria parasites, which we contend remains a viable drug target, is hemozoin formation. This crystalline material consisting of heme can be readily seen when parasites are viewed microscopically. The process of its formation in the parasite, however, is still not fully understood.In early work, we recognized hemozoin formation as a biomineralization process. We have subsequently investigated the kinetics of synthetic hemozoin (β-hematin) crystallization catalyzed at lipid-aqueous interfaces under biomimetic conditions. This led us to the use of neutral detergent-based high-throughput screening (HTS) for inhibitors of β-hematin formation. A good hit rate against malaria parasites was obtained. Simultaneously, we developed a pyridine-based assay which proved successful in measuring the concentrations of hematin not converted to β-hematin.The pyridine assay was adapted to determine the effects of chloroquine and other clinical antimalarials on hemozoin formation in the cell. This permitted the determination of the dose-dependent amounts of exchangeable heme and hemozoin in for the first time. These studies have shown that hemozoin inhibitors cause a dose-dependent increase in exchangeable heme, correlated with decreased parasite survival. Electron spectroscopic imaging (ESI) showed a relocation of heme iron into the parasite cytoplasm, while electron microscopy provided evidence of the disruption of hemozoin crystals. This cellular assay was subsequently extended to top-ranked hits from a wide range of scaffolds found by HTS. Intriguingly, the amounts of exchangeable heme at the parasite growth IC values of these scaffolds showed substantial variation. The amount of exchangeable heme was found to be correlated with the amount of inhibitor accumulated in the parasitized red blood cell. This suggests that heme-inhibitor complexes, rather than free heme, lead to parasite death. This was supported by ESI using a Br-containing compound which showed the colocalization of Fe and Br as well as by confocal Raman microscopy which confirmed the presence of a complex in the parasite. Current evidence indicates that inhibitors block hemozoin formation by surface adsorption. Indeed, we have successfully introduced molecular docking with hemozoin to find new inhibitors. It follows that the resulting increase in free heme leads to the formation of the parasiticidal heme-inhibitor complex. We have reported crystal structures of heme-drug complexes for several aryl methanol antimalarials in nonaqueous media. These form coordination complexes but most other inhibitors interact noncovalently, and the determination of their structures remains a major challenge.It is our view that key future developments will include improved assays to measure cellular heme levels, better in silico approaches for predicting β-hematin inhibition, and a concerted effort to determine the structure and properties of heme-inhibitor complexes.

摘要

在过去的一个世纪里,疟疾死亡人数减少了 85%以上。尽管如此,2018 年仍有 40.5 万人死亡,主要是由 感染造成的。在 21 世纪,大部分进展来自于使用驱虫蚊帐和青蒿素联合疗法。然而,在过去几十年里,东南亚出现了青蒿素清除表型延迟的寄生虫,这威胁到了进一步的进展。因此,寻找新药的工作迫在眉睫。在血液阶段疟原虫中存在一个突出的过程,我们认为这仍然是一个可行的药物靶点,即血卟啉的形成。当寄生虫在显微镜下观察时,可以很容易地看到这种由血红素组成的结晶物质。然而,其在寄生虫中的形成过程仍不完全清楚。在早期的工作中,我们将血卟啉的形成识别为一个生物矿化过程。随后,我们研究了在仿生条件下,脂质-水界面催化的合成血卟啉(β-血卟啉)结晶的动力学。这导致我们使用基于中性去污剂的高通量筛选(HTS)来寻找β-血卟啉形成的抑制剂。我们得到了对抗疟原虫的良好命中率。同时,我们开发了一种基于吡啶的测定方法,该方法成功地测量了未转化为 β-血卟啉的血红素浓度。该吡啶测定法被改编用于测定氯喹和其他临床抗疟药对细胞中血卟啉形成的影响。这使得我们首次能够确定 中可交换的血红素和血卟啉的剂量依赖性含量。这些研究表明,血卟啉抑制剂会导致可交换血红素的剂量依赖性增加,与寄生虫存活率降低相关。电子能谱成像(ESI)显示血红素铁重新定位到寄生虫细胞质中,而电子显微镜提供了血卟啉晶体被破坏的证据。随后,该细胞测定法被扩展到 HTS 发现的各种支架的排名靠前的命中物。有趣的是,这些支架在寄生虫生长 IC 值下的可交换血红素含量有很大的差异。可交换血红素的含量与寄生虫内积累的抑制剂含量相关。这表明血红素-抑制剂复合物,而不是游离血红素,导致寄生虫死亡。ESI 用含 Br 的化合物支持了这一点,该化合物显示了 Fe 和 Br 的共定位,共焦拉曼显微镜也证实了寄生虫中存在复合物。目前的证据表明,抑制剂通过表面吸附阻止血卟啉的形成。事实上,我们已经成功地引入了与血卟啉的分子对接,以寻找新的抑制剂。因此,游离血红素的增加导致了寄生虫杀伤血红素-抑制剂复合物的形成。我们已经报道了几种芳基甲醇类抗疟药物在非水介质中的血红素-药物复合物的晶体结构。这些形成配位复合物,但大多数其他抑制剂以非共价方式相互作用,其结构的确定仍然是一个主要挑战。我们认为,未来的关键发展将包括改进的测定方法来测量细胞内血红素水平、更好的预测β-血卟啉抑制的计算方法以及协同努力来确定血红素-抑制剂复合物的结构和性质。

相似文献

1
Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development.
Acc Chem Res. 2021 Jun 1;54(11):2649-2659. doi: 10.1021/acs.accounts.1c00154. Epub 2021 May 13.
2
Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
Infect Disord Drug Targets. 2013 Aug;13(4):217-77. doi: 10.2174/1871526513666131129155708.
3
Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity.
Int J Parasitol Drugs Drug Resist. 2014 Sep 11;4(3):316-25. doi: 10.1016/j.ijpddr.2014.08.002. eCollection 2014 Dec.
4
Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites.
Eur J Med Chem. 2018 Nov 5;159:243-254. doi: 10.1016/j.ejmech.2018.09.060. Epub 2018 Sep 28.
5
Identification of β-hematin inhibitors in the MMV Malaria Box.
Int J Parasitol Drugs Drug Resist. 2015 Jun 6;5(3):84-91. doi: 10.1016/j.ijpddr.2015.05.003. eCollection 2015 Dec.
6
Heme Aggregation inhibitors: antimalarial drugs targeting an essential biomineralization process.
Curr Med Chem. 2001 Feb;8(2):171-89. doi: 10.2174/0929867013373840.
9
Use of the NP-40 detergent-mediated assay in discovery of inhibitors of beta-hematin crystallization.
Antimicrob Agents Chemother. 2011 Jul;55(7):3363-9. doi: 10.1128/AAC.00121-11. Epub 2011 Apr 25.
10
Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanistic update.
Life Sci. 2007 Feb 6;80(9):813-28. doi: 10.1016/j.lfs.2006.11.008. Epub 2006 Nov 10.

引用本文的文献

1
Quinolines interfere with heme-mediated activation of artemisinins.
bioRxiv. 2025 Aug 23:2025.08.19.670585. doi: 10.1101/2025.08.19.670585.
2
Ferrocenyl Quinoline-Benzimidazole Hybrids: A Multistage Strategy to Combat Drug-Resistant Malaria.
Inorg Chem. 2025 Aug 11;64(31):16152-16167. doi: 10.1021/acs.inorgchem.5c02689. Epub 2025 Jul 31.
3
Arylmethylamino steroid compound 1o interferes with ' hemoglobin metabolism.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0033225. doi: 10.1128/aac.00332-25. Epub 2025 Jun 23.
4
Exploring bioactive molecules released during inter- and intraspecific competition: A paradigm for novel antiparasitic drug discovery and design for human use.
Curr Res Parasitol Vector Borne Dis. 2025 Mar 25;7:100256. doi: 10.1016/j.crpvbd.2025.100256. eCollection 2025.
5
Distinct Physical Properties of β-Hematin in Two Synthetic Media: Compelling Evidence.
ACS Omega. 2025 Mar 19;10(12):11770-11785. doi: 10.1021/acsomega.4c06694. eCollection 2025 Apr 1.
6
Heme Detoxification in the Malaria Parasite : A Time-Dependent Basal-Level Analysis.
bioRxiv. 2025 Mar 6:2025.03.06.641703. doi: 10.1101/2025.03.06.641703.
7
Zinc from an Essential Element to an Antiparasitic Therapeutic Agent.
ACS Omega. 2025 Jan 17;10(3):2393-2414. doi: 10.1021/acsomega.4c07331. eCollection 2025 Jan 28.
8
Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy.
Pharmaceuticals (Basel). 2024 Dec 28;18(1):28. doi: 10.3390/ph18010028.
9
In vitro culture of the parasitic stage larvae of hematophagous parasitic nematode Haemonchus contortus.
Int J Parasitol. 2025 Apr;55(5):263-271. doi: 10.1016/j.ijpara.2025.01.007. Epub 2025 Jan 21.

本文引用的文献

1
A Diverse Range of Hemozoin Inhibiting Scaffolds Act on as Heme Complexes.
ACS Infect Dis. 2021 Feb 12;7(2):362-376. doi: 10.1021/acsinfecdis.0c00680. Epub 2021 Jan 12.
2
A lipocalin mediates unidirectional heme biomineralization in malaria parasites.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16546-16556. doi: 10.1073/pnas.2001153117. Epub 2020 Jun 29.
3
Lapatinib, Nilotinib and Lomitapide Inhibit Haemozoin Formation in Malaria Parasites.
Molecules. 2020 Mar 29;25(7):1571. doi: 10.3390/molecules25071571.
5
Mode of action of quinoline antimalarial drugs in red blood cells infected by revealed in vivo.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):22946-22952. doi: 10.1073/pnas.1910123116. Epub 2019 Oct 28.
6
Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites.
Eur J Med Chem. 2018 Nov 5;159:243-254. doi: 10.1016/j.ejmech.2018.09.060. Epub 2018 Sep 28.
9
Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.
Nat Microbiol. 2017 Oct;2(10):1403-1414. doi: 10.1038/s41564-017-0007-4. Epub 2017 Aug 14.
10
The Effects of Quinoline and Non-Quinoline Inhibitors on the Kinetics of Lipid-Mediated β-Hematin Crystallization.
Langmuir. 2017 Aug 1;33(30):7529-7537. doi: 10.1021/acs.langmuir.7b01132. Epub 2017 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验