Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
Physiol Res. 2021 Jul 12;70(3):293-305. doi: 10.33549/physiolres.934648. Epub 2021 May 12.
The article shows that skeletal muscle plays a dominant role in the catabolism of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and the pathogenesis of their decreased concentrations in liver cirrhosis, increased concentrations in diabetes, and nonspecific alterations in disorders with signs of systemic inflammatory response syndrome (SIRS), such as burn injury and sepsis. The main role of skeletal muscle in BCAA catabolism is due to its mass and high activity of BCAA aminotransferase, which is absent in the liver. Decreased BCAA levels in liver cirrhosis are due to increased use of the BCAA as a donor of amino group to alpha-ketoglutarate for synthesis of glutamate, which in muscles acts as a substrate for ammonia detoxification to glutamine. Increased BCAA levels in diabetes are due to alterations in glycolysis, citric acid cycle, and fatty acid oxidation. Decreased glycolysis and citric cycle activity impair BCAA transamination to branched-chain keto acids (BCKAs) due to decreased supply of amino group acceptors (alpha-ketoglutarate, pyruvate, and oxaloacetate); increased fatty acid oxidation inhibits flux of BCKA through BCKA dehydrogenase due to increased supply of NADH and acyl-CoAs. Alterations in BCAA levels in disorders with SIRS are inconsistent due to contradictory effects of SIRS on muscles. Specifically, increased proteolysis and insulin resistance tend to increase BCAA levels, whereas activation of BCKA dehydrogenase and glutamine synthesis tend to decrease BCAA levels. The studies are needed to elucidate the role of alterations in BCAA metabolism and the effects of BCAA supplementation on the outcomes of specific diseases.
本文表明,骨骼肌在支链氨基酸(BCAA;缬氨酸、亮氨酸和异亮氨酸)的分解代谢中起主导作用,并且在肝硬化中其浓度降低、糖尿病中浓度升高以及全身性炎症反应综合征(SIRS)迹象的疾病中出现非特异性改变(如烧伤和败血症)的发病机制中起重要作用。骨骼肌在 BCAA 分解代谢中的主要作用归因于其质量和高活性的 BCAA 转氨酶,而肝脏中不存在这种酶。肝硬化中 BCAA 水平降低是由于将 BCAA 作为氨基供体用于合成谷氨酸的α-酮戊二酸,而在肌肉中,谷氨酸作为氨解毒为谷氨酰胺的底物。糖尿病中 BCAA 水平升高是由于糖酵解、柠檬酸循环和脂肪酸氧化的改变。由于氨基酸受体(α-酮戊二酸、丙酮酸和草酰乙酸)供应减少,降低的糖酵解和柠檬酸循环活性会损害 BCAA 向支链酮酸(BCKA)的转氨基作用;增加的脂肪酸氧化会由于 NADH 和酰基辅酶 A 的供应增加而抑制 BCKA 通过 BCKA 脱氢酶的流动。SIRS 相关疾病中 BCAA 水平的改变不一致是由于 SIRS 对肌肉的矛盾作用。具体而言,增加的蛋白水解和胰岛素抵抗往往会增加 BCAA 水平,而 BCKA 脱氢酶和谷氨酰胺合成的激活则往往会降低 BCAA 水平。需要进一步的研究来阐明 BCAA 代谢改变的作用以及 BCAA 补充对特定疾病结局的影响。