Suppr超能文献

腹部成像中空间相干性与原位压力的关系。

On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA.

出版信息

Ultrasound Med Biol. 2021 Aug;47(8):2310-2320. doi: 10.1016/j.ultrasmedbio.2021.03.008. Epub 2021 May 11.

Abstract

Tissue harmonic signal quality has been shown to improve with elevated acoustic pressure. The peak rarefaction pressure (PRP) for a given transmit, however, is limited by the Food and Drug Administration guidelines for mechanical index. We have previously demonstrated that the mechanical index overestimates in situ PRP for tightly focused beams in vivo, due primarily to phase aberration. In this study, we evaluate two spatial coherence-based image quality metrics-short-lag spatial coherence and harmonic short-lag spatial coherence-as proxy estimates for phase aberration and assess their correlation with in situ PRP in simulations and experiments when imaging through abdominal body walls. We demonstrate strong correlation between both spatial coherence-based metrics and in situ PRP (R = 0.77 for harmonic short-lag spatial coherence, R = 0.67 for short-lag spatial coherence), an observation that could be leveraged in the future for patient-specific selection of acoustic output.

摘要

组织谐波信号质量已被证明随着声压的升高而提高。然而,给定发射的峰值稀疏压力 (PRP) 受到食品和药物管理局机械指数指南的限制。我们之前已经证明,由于相位像差,机械指数高估了体内紧密聚焦光束的实际 PRP。在这项研究中,我们评估了两种基于空间相干性的图像质量指标——短延迟空间相干性和谐波短延迟空间相干性——作为相位像差的代理估计,并在通过腹部体壁成像时评估了它们与实际 PRP 的相关性。我们证明了这两种基于空间相干性的指标与实际 PRP 之间存在很强的相关性(谐波短延迟空间相干性的 R 值为 0.77,短延迟空间相干性的 R 值为 0.67),这一观察结果将来可以用于针对患者的声输出选择。

相似文献

1
On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging.
Ultrasound Med Biol. 2021 Aug;47(8):2310-2320. doi: 10.1016/j.ultrasmedbio.2021.03.008. Epub 2021 May 11.
2
Quantifying the Effect of Abdominal Body Wall on In Situ Peak Rarefaction Pressure During Diagnostic Ultrasound Imaging.
Ultrasound Med Biol. 2021 Jun;47(6):1548-1558. doi: 10.1016/j.ultrasmedbio.2021.01.028. Epub 2021 Mar 13.
3
Quantifying Image Quality Improvement Using Elevated Acoustic Output in B-Mode Harmonic Imaging.
Ultrasound Med Biol. 2017 Oct;43(10):2416-2425. doi: 10.1016/j.ultrasmedbio.2017.06.024. Epub 2017 Jul 26.
4
Spatial coherence in human tissue: implications for imaging and measurement.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Dec;61(12):1976-87. doi: 10.1109/TUFFC.2014.006362.
5
In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
Ultrason Imaging. 2015 Apr;37(2):101-16. doi: 10.1177/0161734614547281. Epub 2014 Aug 12.
7
Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
Ultrason Imaging. 2017 Jul;39(4):224-239. doi: 10.1177/0161734616688328. Epub 2017 Jan 9.
8
Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Aug;50(8):1010-22. doi: 10.1109/tuffc.2003.1226545.
9
Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Apr;59(4):648-59. doi: 10.1109/TUFFC.2012.2243.
10
Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging.
Ultrasound Med Biol. 2018 Feb;44(2):303-310. doi: 10.1016/j.ultrasmedbio.2017.10.003. Epub 2017 Nov 21.

引用本文的文献

1
Aberration correction in abdominal histotripsy.
Int J Hyperthermia. 2023;40(1):2266594. doi: 10.1080/02656736.2023.2266594. Epub 2023 Oct 9.
2
Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse.
Ultrasound Med Biol. 2023 May;49(5):1182-1193. doi: 10.1016/j.ultrasmedbio.2023.01.004. Epub 2023 Feb 8.
3
Quantifying the Impact of Imaging Through Body Walls on Shear Wave Elasticity Measurements.
Ultrasound Med Biol. 2023 Mar;49(3):734-749. doi: 10.1016/j.ultrasmedbio.2022.10.005. Epub 2022 Dec 22.

本文引用的文献

1
Quantifying the Effect of Abdominal Body Wall on In Situ Peak Rarefaction Pressure During Diagnostic Ultrasound Imaging.
Ultrasound Med Biol. 2021 Jun;47(6):1548-1558. doi: 10.1016/j.ultrasmedbio.2021.01.028. Epub 2021 Mar 13.
3
Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging.
Ultrasound Med Biol. 2018 Feb;44(2):303-310. doi: 10.1016/j.ultrasmedbio.2017.10.003. Epub 2017 Nov 21.
4
Quantifying Image Quality Improvement Using Elevated Acoustic Output in B-Mode Harmonic Imaging.
Ultrasound Med Biol. 2017 Oct;43(10):2416-2425. doi: 10.1016/j.ultrasmedbio.2017.06.024. Epub 2017 Jul 26.
5
Efficient Strategies for Estimating the Spatial Coherence of Backscatter.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Mar;64(3):500-513. doi: 10.1109/TUFFC.2016.2634004. Epub 2016 Dec 1.
6
ARFI: from basic principles to clinical applications in diffuse chronic disease-a review.
Insights Imaging. 2016 Oct;7(5):735-46. doi: 10.1007/s13244-016-0514-5. Epub 2016 Aug 23.
7
Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
Ultrasound Med Biol. 2016 May;42(5):1031-41. doi: 10.1016/j.ultrasmedbio.2015.12.012. Epub 2016 Jan 21.
8
Prediction of liver cirrhosis, using diagnostic imaging tools.
World J Hepatol. 2015 Aug 18;7(17):2069-79. doi: 10.4254/wjh.v7.i17.2069.
10
Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver.
Ultrasound Med Biol. 2015 Jul;41(7):1948-57. doi: 10.1016/j.ultrasmedbio.2015.02.019. Epub 2015 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验