Suppr超能文献

珍珠-DGS公式:一种基于机器学习的开源人工晶状体厚度计算公式的开发。

The PEARL-DGS Formula: The Development of an Open-source Machine Learning-based Thick IOL Calculation Formula.

作者信息

Debellemanière Guillaume, Dubois Mathieu, Gauvin Mathieu, Wallerstein Avi, Brenner Luis F, Rampat Radhika, Saad Alain, Gatinel Damien

机构信息

From the Department of Ophthalmology, Rothschild Foundation Hospital, Paris, France (D.G., D.M., R.R., S.A.,G.D.).

Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Quebec, Canada (G.M., W.A.); LASIK MD, Montreal, Quebec, Canada (G.M., W.A.).

出版信息

Am J Ophthalmol. 2021 Dec;232:58-69. doi: 10.1016/j.ajo.2021.05.004. Epub 2021 May 13.

Abstract

PURPOSE

To describe an open-source, reproducible, step-by-step method to design sum-of-segments thick intraocular lens (IOL) calculation formulas, and to evaluate a formula built using this methodology.

DESIGN

Retrospective, multicenter case series METHODS: A set of 4242 eyes implanted with Finevision IOLs (PhysIOL, Liège, Belgium) was used to devise the formula design process and build the formula. A different set of 677 eyes from the same center was kept separate to serve as a test set. The resulting formula was evaluated on the test set as well as another independent data set of 262 eyes.

RESULTS

The lowest standard deviation (SD) of prediction errors on Set 1 were obtained with the PEARL-DGS formula (±0.382 D), followed by K6 and Olsen (±0.394 D), EVO 2.0 (±0.398 D), RBF 3.0, and BUII (±0.402 D). The formula yielding the lowest SD on Set 2 was the PEARL-DGS (±0.269 D), followed by Olsen (±0.272 D), K6 (±0.276 D), EVO 2.0 (±0.277 D), and BUII (±0.301 D).

CONCLUSION

Our methodology achieved an accuracy comparable to other state-of-the-art IOL formulas. The open-source tools provided in this article could allow other researchers to reproduce our results using their own data sets, with other IOL models, population settings, biometric devices, and measured, rather than calculated, posterior corneal radius of curvature or sum-of-segments axial lengths.

摘要

目的

描述一种开源、可重复的逐步方法,用于设计分段总和型人工晶状体(IOL)计算公式,并评估使用该方法构建的公式。

设计

回顾性多中心病例系列

方法

使用一组4242只植入Finevision IOL(PhysIOL,列日,比利时)的眼睛来设计公式设计过程并构建公式。来自同一中心的另一组677只眼睛单独保留作为测试集。在测试集以及另一个由262只眼睛组成的独立数据集中对所得公式进行评估。

结果

在第1组上预测误差的最低标准差(SD)由PEARL-DGS公式获得(±0.382 D),其次是K6和奥尔森公式(±0.394 D)、EVO 2.0(±0.398 D)、RBF 3.0和BUII(±0.402 D)。在第2组上产生最低标准差的公式是PEARL-DGS(±0.269 D),其次是奥尔森公式(±0.272 D)、K6(±0.276 D)、EVO 2.0(±0.277 D)和BUII(±0.301 D)。

结论

我们的方法实现了与其他先进IOL公式相当的准确性。本文提供的开源工具可使其他研究人员使用他们自己的数据集、其他IOL模型、人群设置、生物测量设备以及测量而非计算的后角膜曲率半径或分段总和型眼轴长度来重现我们的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验