Suppr超能文献

粒子追踪质子计算机断层扫描——数据采集、预处理和预条件处理

Particle-Tracking Proton Computed Tomography-Data Acquisition, Preprocessing, and Preconditioning.

作者信息

Schultze Blake, Karbasi Paniz, Sarosiek Christina, Coutrakon George, Ordoñez Caesar E, Karonis Nicholas T, Duffin Kirk L, Bashkirov Vladimir A, Johnson Robert P, Schubert Keith E, Schulte Reinhard W

机构信息

Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA.

Bioinformatics Department, University of Texas-Southwestern, Dallas, TX 75390, USA.

出版信息

IEEE Access. 2021;9:25946-25958. doi: 10.1109/access.2021.3057760. Epub 2021 Feb 8.

Abstract

Proton CT (pCT) is a promising new imaging technique that can reconstruct relative stopping power (RSP) more accurately than x-ray CT in each cubic millimeter voxel of the patient. This, in turn, will result in better proton range accuracy and, therefore, smaller planned tumor volumes (PTV). The hardware description and some reconstructed images have previously been reported. In a series of two contributions, we focus on presenting the software algorithms that convert pCT detector data to the final reconstructed pCT images for application in proton treatment planning. There were several options on how to accomplish this, and we will describe our solutions at each stage of the data processing chain. In the first paper of this series, we present the data acquisition with the pCT tracking and energy-range detectors and how the data are preprocessed, including the conversion to the well-formatted track information from tracking data and water-equivalent path length from the data of a calibrated multi-stage energy-range detector. These preprocessed data are then used for the initial image formation with an FDK cone-beam CT algorithm. The output of data acquisition, preprocessing, and FDK reconstruction is presented along with illustrative imaging results for two phantoms, including a pediatric head phantom. The second paper in this series will demonstrate the use of iterative solvers in conjunction with the superiorization methodology to further improve the images resulting from the upfront FDK image reconstruction and the implementation of these algorithms on a hybrid CPU/GPU computer cluster.

摘要

质子计算机断层扫描(pCT)是一种很有前景的新成像技术,它能够在患者的每立方毫米体素中比X射线CT更精确地重建相对阻止本领(RSP)。这进而将带来更高的质子射程精度,因此,计划靶体积(PTV)更小。先前已经报道过硬件描述和一些重建图像。在一系列两篇论文中,我们着重介绍将pCT探测器数据转换为最终重建的pCT图像以用于质子治疗计划的软件算法。关于如何实现这一点有多种选择,我们将在数据处理链的每个阶段描述我们的解决方案。在本系列的第一篇论文中,我们介绍使用pCT跟踪和能量范围探测器进行数据采集以及数据如何进行预处理,包括将跟踪数据转换为格式良好的轨迹信息,以及将校准后的多级能量范围探测器的数据转换为水等效路径长度。然后,这些预处理后的数据用于通过FDK锥束CT算法进行初始图像形成。展示了数据采集、预处理和FDK重建的输出结果,以及两个模体(包括一个儿童头部模体)的成像示例结果。本系列的第二篇论文将展示结合优化方法使用迭代求解器,以进一步改善前期FDK图像重建得到的图像,以及这些算法在混合CPU / GPU计算机集群上的实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f35/8117661/665ada0fc752/nihms-1674063-f0012.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验