Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA.
Integr Comp Biol. 2021 Nov 17;61(5):1631-1643. doi: 10.1093/icb/icab052.
Mantis shrimp swim via metachronal rowing, a pattern in which the pleopods (swimming limbs) stroke sequentially, starting with the last pair and followed by anterior neighbors. A similar swimming pattern is used at various sizes, Reynolds numbers, and advance ratios by diverse organisms including ciliates, ctenophores, copepods, krill, and lobsters. Understanding this type of locomotion is important because it is widespread and may inspire the design of underwater vehicles where efficiency, robustness, and maneuverability are desired. However, detailed measurements of the flow around free-swimming, metachronally rowing organisms are scarce, especially for organisms swimming in a high Reynolds number regime (Re ≥ 104). In this study, we present time-resolved, planar PIV measurements of a swimming peacock mantis shrimp (Odontodactylus scyllarus). Simultaneous kinematics measurements of the animal, which had body and pleopod lengths of 114 and 20 mm, respectively, reveal mean swimming speeds of 0.2-1.9 m s-1 and pleopod beat frequencies of 3.6-13 Hz, corresponding to advance ratios of 0.75-1.84 and body-based Reynolds numbers of 23,000-217,000. Further, the animal's stroke is not purely metachronal, with a long phase lag between initiation of the first and fifth pleopod power strokes. Flow measurements in the sagittal plane show that each stroking pleopod pair creates a posteriorly moving tip vortex which evades destruction by the recovery strokes of other pleopod pairs. The vortex created by the anteriormost pleopod pair is the strongest and, owing to the animal's high advance ratio, is intercepted by the power stroke of the posteriormost pleopod pair. The vortex strength increases as a result of this interaction, which may increase swimming speed or efficiency. A relationship for vortex interception by the posterior pleopod is proposed that relates the phase lag between the interacting pleopods to the beat frequency, distance between those pleopods, and speed of the vortex relative to the animal. We describe this interaction with a novel parameter called the interpleopod vortex phase matching Strouhal number StIVPM which is equal to the phase lag between interacting pleopods. This new nondimensional parameter may be useful in predicting the conditions where a constructive interaction may occur in other species or in physical models. Finally, we relate the advance ratio to the Reynolds number ratio, the ratio between the body-based Reynolds number and the pleopod-based Reynolds number. The importance of these parameters in promoting the interpleopod vortex interactions identified here, in dynamically scaled experiments, and in wake signatures behind schooling metachronal swimmers is discussed.
螳螂虾通过周期性划动进行游泳,在这种模式中,游泳肢(游泳的附肢)依次划动,从最后一对开始,然后是前一对。包括纤毛虫、栉水母、桡足类、磷虾和龙虾在内的各种生物都以各种大小、雷诺数和前进比使用类似的游泳模式。了解这种运动方式很重要,因为它很普遍,可能会激发对水下交通工具的设计,这些交通工具需要效率、鲁棒性和机动性。然而,对自由游泳、周期性划动的生物周围的流动进行详细测量是很少的,特别是对于在高雷诺数(Re≥104)下游泳的生物。在这项研究中,我们展示了一种游动孔雀螳螂虾(Odontodactylus scyllarus)的时间分辨、平面 PIV 测量。对动物的同时运动学测量,其体长和游泳肢长分别为 114 和 20 毫米,揭示了 0.2-1.9 m s-1 的平均游泳速度和 3.6-13 Hz 的游泳肢拍打频率,对应于 0.75-1.84 的前进比和 23,000-217,000 的基于身体的雷诺数。此外,动物的划水动作并不完全是周期性的,第一对和第五对游泳肢的动力划水之间存在较长的相位滞后。矢状面的流动测量显示,每对划动的游泳肢都会产生一个向后移动的尖端涡旋,该涡旋通过其他游泳肢的恢复划水而避免破坏。最前面的游泳肢对产生的涡旋最强,并且由于动物的高前进比,它被最后一对游泳肢的动力划水拦截。由于这种相互作用,涡旋强度增加,这可能会增加游泳速度或效率。提出了一种用于后对游泳肢拦截涡旋的关系,该关系将相互作用的游泳肢之间的相位滞后与拍打频率、这些游泳肢之间的距离以及相对于动物的涡旋速度相关联。我们用一个新的参数来描述这种相互作用,称为互游泳肢涡旋相位匹配斯特劳哈尔数 StIVPM,它等于相互作用的游泳肢之间的相位滞后。这个新的无量纲参数可能有助于预测在其他物种或物理模型中可能发生建设性相互作用的条件。最后,我们将前进比与雷诺数比联系起来,即基于身体的雷诺数与基于游泳肢的雷诺数之比。讨论了这些参数在促进这里确定的互游泳肢涡旋相互作用、动力比例实验和成群周期性游泳者尾迹中的重要性。