Xiong Guo-Li, Zhao Yue, Liu Lu, Ma Zhong-Ye, Lu Ai-Ping, Cheng Yan, Hou Ting-Jun, Cao Dong-Sheng
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410003, China.
Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China.
J Med Chem. 2021 Jun 10;64(11):7544-7554. doi: 10.1021/acs.jmedchem.1c00234. Epub 2021 May 19.
As one of the central tasks of modern medicinal chemistry, scaffold hopping is expected to lead to the discovery of structural novel biological active compounds and broaden the chemical space of known active compounds. Here, we report the computational bioactivity fingerprint (CBFP) for easier scaffold hopping, where the predicted activities in multiple quantitative structure-activity relationship models are integrated to characterize the biological space of a molecule. In retrospective benchmarks, the CBFP representation shows outstanding scaffold hopping potential relative to other chemical descriptors. In the prospective validation for the discovery of novel inhibitors of poly [ADP-ribose] polymerase 1, 35 predicted compounds with diverse structures are tested, 25 of which show detectable growth-inhibitory activity; beyond this, the most potent (compound 6) has an IC of 0.263 nM. These results support the use of CBFP representation as the bioactivity proxy of molecules to explore uncharted chemical space and discover novel compounds.
作为现代药物化学的核心任务之一,骨架跃迁有望促成结构新颖的生物活性化合物的发现,并拓展已知活性化合物的化学空间。在此,我们报告了一种便于进行骨架跃迁的计算生物活性指纹(CBFP),它整合了多个定量构效关系模型中的预测活性,以表征分子的生物空间。在回顾性基准测试中,相对于其他化学描述符,CBFP表征显示出卓越的骨架跃迁潜力。在探索聚[ADP-核糖]聚合酶1新型抑制剂的前瞻性验证中,对35种结构各异的预测化合物进行了测试,其中25种表现出可检测到的生长抑制活性;除此之外,活性最强的化合物(化合物6)的半数抑制浓度为0.263 nM。这些结果支持将CBFP表征用作分子的生物活性代理,以探索未知的化学空间并发现新型化合物。