Suppr超能文献

在类似细胞质的条件下通过物理相互作用自组装蛋白质超结构。

Self-assembly of protein superstructures by physical interactions under cytoplasm-like conditions.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California.

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California.

出版信息

Biophys J. 2021 Jul 6;120(13):2701-2709. doi: 10.1016/j.bpj.2021.05.007. Epub 2021 May 20.

Abstract

The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)-genetically encoded protein nanoparticles that form ordered intracellular clusters-as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs.

摘要

多聚体蛋白质复合物的结构驱动组装和细胞内相类似的蛋白质凝聚物的形成一直是研究的热点。然而,由一般物理而不是特定生化相互作用驱动的包含细胞成分的更大超结构的组装仍然相对没有被描述。在这里,我们使用气穴(GVs)-遗传编码的形成有序的细胞内簇的蛋白质纳米颗粒-作为模型系统来研究在类似于细胞质的条件下驱动多颗粒组装的力。我们的计算和实验结果表明,通过筛选它们与电解质的相互静电排斥并利用溶解的大分子产生拥挤力,可以实现 GV 的有序组装。这些力的精确平衡导致了不同的包装配置。生物大分子,如聚赖氨酸和 DNA,能够驱动 GV 的聚集。这些结果为物理驱动相互作用如何影响蛋白质超结构的形成提供了基本的见解,为通过合成生物学方法在细胞环境中操纵纳米颗粒组装提供了指导,并为 GV 的生物技术应用研究提供了信息。

相似文献

4
Electrostatic assembly of nanoparticles and biomacromolecules.
Acc Chem Res. 2002 Oct;35(10):847-55. doi: 10.1021/ar010094x.
5
Size-encoded hierarchical self-assembly of nanoparticles into chains and tubules.纳米粒子通过尺寸编码的层级自组装成链和管。
J Colloid Interface Sci. 2021 Dec 15;604:866-875. doi: 10.1016/j.jcis.2021.07.047. Epub 2021 Jul 16.
6
Dynamic nanoparticle assemblies.动态纳米粒子组装体。
Acc Chem Res. 2012 Nov 20;45(11):1916-26. doi: 10.1021/ar200305f. Epub 2012 Mar 26.

引用本文的文献

2
Phase transition of GvpU regulates gas vesicle clustering in bacteria.GvpU 的相变调节细菌中气泡的聚集。
Nat Microbiol. 2024 Apr;9(4):1021-1035. doi: 10.1038/s41564-024-01648-3. Epub 2024 Mar 29.
3
Gas Vesicle-Blood Interactions Enhance Ultrasound Imaging Contrast.气液泡-血液相互作用增强超声成像对比度。
Nano Lett. 2023 Dec 13;23(23):10748-10757. doi: 10.1021/acs.nanolett.3c02780. Epub 2023 Nov 20.

本文引用的文献

1
The structural basis of Rubisco phase separation in the pyrenoid.淀粉核中 Rubisco 相分离的结构基础。
Nat Plants. 2020 Dec;6(12):1480-1490. doi: 10.1038/s41477-020-00811-y. Epub 2020 Nov 23.
2
Genetically Encoded Phase Contrast Agents for Digital Holographic Microscopy.基因编码的相衬造影剂用于数字全息显微镜。
Nano Lett. 2020 Nov 11;20(11):8127-8134. doi: 10.1021/acs.nanolett.0c03159. Epub 2020 Oct 29.
5
Formation and functionalization of membraneless compartments in Escherichia coli.大肠杆菌中无膜隔间的形成和功能化。
Nat Chem Biol. 2020 Oct;16(10):1143-1148. doi: 10.1038/s41589-020-0579-9. Epub 2020 Jun 29.
7
Biological phase separation: cell biology meets biophysics.生物相分离:细胞生物学与生物物理学的交汇
Biophys Rev. 2020 Apr;12(2):519-539. doi: 10.1007/s12551-020-00680-x. Epub 2020 Mar 18.
8
Genetically Encodable Contrast Agents for Optical Coherence Tomography.用于光学相干断层扫描的基因编码造影剂
ACS Nano. 2020 Jul 28;14(7):7823-7831. doi: 10.1021/acsnano.9b08432. Epub 2020 Feb 10.
10
Ultrasound imaging of gene expression in mammalian cells.哺乳动物细胞基因表达的超声成像。
Science. 2019 Sep 27;365(6460):1469-1475. doi: 10.1126/science.aax4804.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验