Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California.
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California.
Biophys J. 2021 Jul 6;120(13):2701-2709. doi: 10.1016/j.bpj.2021.05.007. Epub 2021 May 20.
The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)-genetically encoded protein nanoparticles that form ordered intracellular clusters-as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs.
多聚体蛋白质复合物的结构驱动组装和细胞内相类似的蛋白质凝聚物的形成一直是研究的热点。然而,由一般物理而不是特定生化相互作用驱动的包含细胞成分的更大超结构的组装仍然相对没有被描述。在这里,我们使用气穴(GVs)-遗传编码的形成有序的细胞内簇的蛋白质纳米颗粒-作为模型系统来研究在类似于细胞质的条件下驱动多颗粒组装的力。我们的计算和实验结果表明,通过筛选它们与电解质的相互静电排斥并利用溶解的大分子产生拥挤力,可以实现 GV 的有序组装。这些力的精确平衡导致了不同的包装配置。生物大分子,如聚赖氨酸和 DNA,能够驱动 GV 的聚集。这些结果为物理驱动相互作用如何影响蛋白质超结构的形成提供了基本的见解,为通过合成生物学方法在细胞环境中操纵纳米颗粒组装提供了指导,并为 GV 的生物技术应用研究提供了信息。