Suppr超能文献

利用机器学习通过常规血液检测诊断 COVID-19。

COVID-19 diagnosis by routine blood tests using machine learning.

机构信息

Smart Blood Analytics Swiss SA, Höschgasse 25, 8008, Zurich, Switzerland.

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Sci Rep. 2021 May 24;11(1):10738. doi: 10.1038/s41598-021-90265-9.

Abstract

Physicians taking care of patients with COVID-19 have described different changes in routine blood parameters. However, these changes hinder them from performing COVID-19 diagnoses. We constructed a machine learning model for COVID-19 diagnosis that was based and cross-validated on the routine blood tests of 5333 patients with various bacterial and viral infections, and 160 COVID-19-positive patients. We selected the operational ROC point at a sensitivity of 81.9% and a specificity of 97.9%. The cross-validated AUC was 0.97. The five most useful routine blood parameters for COVID-19 diagnosis according to the feature importance scoring of the XGBoost algorithm were: MCHC, eosinophil count, albumin, INR, and prothrombin activity percentage. t-SNE visualization showed that the blood parameters of the patients with a severe COVID-19 course are more like the parameters of a bacterial than a viral infection. The reported diagnostic accuracy is at least comparable and probably complementary to RT-PCR and chest CT studies. Patients with fever, cough, myalgia, and other symptoms can now have initial routine blood tests assessed by our diagnostic tool. All patients with a positive COVID-19 prediction would then undergo standard RT-PCR studies to confirm the diagnosis. We believe that our results represent a significant contribution to improvements in COVID-19 diagnosis.

摘要

照顾 COVID-19 患者的医生描述了常规血液参数的不同变化。然而,这些变化妨碍了他们进行 COVID-19 诊断。我们构建了一个基于 5333 例各种细菌和病毒感染患者和 160 例 COVID-19 阳性患者的常规血液检测数据,并进行了交叉验证的 COVID-19 诊断机器学习模型。我们选择了灵敏度为 81.9%、特异性为 97.9%的操作 ROC 点。交叉验证的 AUC 为 0.97。根据 XGBoost 算法的特征重要性评分,对 COVID-19 诊断最有用的五个常规血液参数是:MCHC、嗜酸性粒细胞计数、白蛋白、INR 和凝血酶原活性百分比。t-SNE 可视化显示,严重 COVID-19 病程患者的血液参数更类似于细菌感染而不是病毒感染的参数。报告的诊断准确性至少与 RT-PCR 和胸部 CT 研究相当,可能具有互补性。现在,有发热、咳嗽、肌肉疼痛和其他症状的患者可以通过我们的诊断工具对其初始常规血液检测进行评估。所有 COVID-19 预测阳性的患者都将接受标准的 RT-PCR 研究以确认诊断。我们相信,我们的结果代表了对 COVID-19 诊断改进的重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d4/8144373/9879d31a9743/41598_2021_90265_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验