Suppr超能文献

钾氯协同转运蛋白的磷酸化调节、核苷酸结合和离子通道控制。

Phospho-regulation, nucleotide binding and ion access control in potassium-chloride cotransporters.

机构信息

Nuffield Department of Medicine, Centre of Medicines Discovery, University of Oxford, Oxford, UK.

Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

出版信息

EMBO J. 2021 Jul 15;40(14):e107294. doi: 10.15252/embj.2020107294. Epub 2021 May 25.

Abstract

Potassium-coupled chloride transporters (KCCs) play crucial roles in regulating cell volume and intracellular chloride concentration. They are characteristically inhibited under isotonic conditions via phospho-regulatory sites located within the cytoplasmic termini. Decreased inhibitory phosphorylation in response to hypotonic cell swelling stimulates transport activity, and dysfunction of this regulatory process has been associated with various human diseases. Here, we present cryo-EM structures of human KCC3b and KCC1, revealing structural determinants for phospho-regulation in both N- and C-termini. We show that phospho-mimetic KCC3b is arrested in an inward-facing state in which intracellular ion access is blocked by extensive contacts with the N-terminus. In another mutant with increased isotonic transport activity, KCC1Δ19, this interdomain interaction is absent, likely due to a unique phospho-regulatory site in the KCC1 N-terminus. Furthermore, we map additional phosphorylation sites as well as a previously unknown ATP/ADP-binding pocket in the large C-terminal domain and show enhanced thermal stabilization of other CCCs by adenine nucleotides. These findings provide fundamentally new insights into the complex regulation of KCCs and may unlock innovative strategies for drug development.

摘要

钾离子-氯离子协同转运蛋白(KCCs)在调节细胞体积和细胞内氯离子浓度方面发挥着关键作用。它们的细胞质末端存在磷酸化调节位点,在等渗条件下会被这些位点所抑制。细胞在低渗环境中肿胀时,抑制性磷酸化减少会刺激转运活性,而这种调节过程的功能障碍与多种人类疾病有关。在这里,我们呈现了人源 KCC3b 和 KCC1 的冷冻电镜结构,揭示了 N 端和 C 端磷酸化调节的结构决定因素。我们发现,KCC3b 的磷酸模拟物被阻滞在内向构象中,此时细胞内离子无法进入,因为其与 N 端的广泛接触而被阻断。在另一个具有增加的等渗转运活性的突变体 KCC1Δ19 中,这种结构域间的相互作用不存在,这可能是由于 KCC1 N 端的一个独特的磷酸化调节位点。此外,我们还在大的 C 端结构域中定位了其他磷酸化位点和一个先前未知的 ATP/ADP 结合口袋,并表明腺嘌呤核苷酸增强了其他 CCC 的热稳定性。这些发现为 KCCs 的复杂调节提供了全新的见解,并可能为药物开发提供创新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/884c/8280820/3f2f05c58924/EMBJ-40-e107294-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验