Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA.
Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
Genome Res. 2021 Oct;31(10):1856-1866. doi: 10.1101/gr.271346.120. Epub 2021 May 25.
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation in various cellular processes including cell proliferation and differentiation, but the APA heterogeneity among single cells remains largely unknown. Single-cell RNA sequencing (scRNA-seq) has been extensively used to define cell subpopulations at the transcription level. Yet, most scRNA-seq data have not been analyzed in an "APA-aware" manner. Here, we introduce dynamic analysis of APA from single-cell RNA-seq (scDaPars), a bioinformatics algorithm to accurately quantify APA events at both single-cell and single-gene resolution using either 3'-end (10x Chromium) or full-length (Smart-seq2) scRNA-seq data. Validations in both real and simulated data indicate that scDaPars can robustly recover missing APA events caused by the low amounts of mRNA sequenced in single cells. When applied to cancer and human endoderm differentiation data, scDaPars not only revealed cell-type-specific APA regulation but also identified cell subpopulations that are otherwise invisible to conventional gene expression analysis. Thus, scDaPars will enable us to understand cellular heterogeneity at the post-transcriptional APA level.
可变聚腺苷酸化 (APA) 是细胞增殖和分化等多种细胞过程中转录后调控的主要机制,但单个细胞之间的 APA 异质性在很大程度上仍不清楚。单细胞 RNA 测序 (scRNA-seq) 已广泛用于在转录水平上定义细胞亚群。然而,大多数 scRNA-seq 数据尚未以“APA 感知”的方式进行分析。在这里,我们引入了 scRNA-seq 中可变聚腺苷酸化的动态分析 (scDaPars),这是一种生物信息学算法,可使用 3'-末端 (10x Chromium) 或全长 (Smart-seq2) scRNA-seq 数据,以单细胞和单基因分辨率准确量化 APA 事件。在真实和模拟数据中的验证表明,scDaPars 可以稳健地恢复由于单个细胞中测序的 mRNA 量低而导致的缺失 APA 事件。当应用于癌症和人类内胚层分化数据时,scDaPars 不仅揭示了细胞类型特异性的 APA 调控,而且还鉴定了常规基因表达分析无法识别的细胞亚群。因此,scDaPars 将使我们能够在转录后 APA 水平上理解细胞异质性。