School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Dalton Trans. 2021 Jun 22;50(24):8330-8337. doi: 10.1039/d1dt01061a.
Controlling the microstructure and composition of electrodes is crucial to enhance their rate capability and cycling stability for lithium storage. Inspired by the highly interconnected network and good mechanical integrity of an ant-nest architecture, herein, a biomimetic strategy is proposed to enhance the electrochemical performance of Cu2-xSe. After facile carbonization and selenization treatments, the 3D Cu-MOF is successfully transformed into the final ant-nest-like Cu2-xSe@C (AN-Cu2-xSe@C). The AN-Cu2-xSe@C is composed of interconnected Cu2-xSe channels with amorphous carbon coated on the outer surface. The 3D interconnected channels within the AN-Cu2-xSe@C provide fast charge transport pathways and enhanced structural integrity to tolerate the large volume fluctuations of Cu2-xSe during cycling. When applied as the anode for lithium storage, the AN-Cu2-xSe@C shows remarkable electrochemical performance with a high capacity of 1452 mA h g-1 after 1200 cycles at 1.0 A g-1 and 879 mA h g-1 after 2500 cycles at 10.0 A g-1, respectively. Mechanism investigations demonstrate that the AN-Cu2-xSe@C experiences complicated conversion-intercalation co-existence reactions upon cycling. The existence of capacitive behaviour (74%) also contributes to the extended cycling performance. Our work offers a new avenue for designing a high performance electrode using the biomimetic concept.
控制电极的微观结构和组成对于提高其倍率性能和循环稳定性至关重要。受蚁巢结构高度互联网络和良好机械完整性的启发,本文提出了一种仿生策略来增强 Cu2-xSe 的电化学性能。通过简单的碳化和硒化处理,3D Cu-MOF 成功转化为最终的蚁巢状 Cu2-xSe@C (AN-Cu2-xSe@C)。AN-Cu2-xSe@C 由相互连接的 Cu2-xSe 通道组成,外表面涂有非晶态碳。AN-Cu2-xSe@C 内的 3D 相互连接的通道提供了快速的电荷传输途径,并增强了结构完整性,以在循环过程中容纳 Cu2-xSe 的大体积膨胀。当用作锂离子存储的阳极时,AN-Cu2-xSe@C 在 1.0 A g-1 下循环 1200 次后具有 1452 mA h g-1 的高容量,在 10.0 A g-1 下循环 2500 次后具有 879 mA h g-1 的容量,分别。机理研究表明,AN-Cu2-xSe@C 在循环过程中经历了复杂的转化-插层共存反应。电容行为(74%)的存在也有助于延长循环性能。我们的工作为使用仿生概念设计高性能电极提供了新途径。