Suppr超能文献

SAMF:自适应蛋白建模框架。

SAMF: a self-adaptive protein modeling framework.

机构信息

MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.

出版信息

Bioinformatics. 2021 Nov 18;37(22):4075-4082. doi: 10.1093/bioinformatics/btab411.

Abstract

MOTIVATION

Gradient descent-based protein modeling is a popular protein structure prediction approach that takes as input the predicted inter-residue distances and other necessary constraints and folds protein structures by minimizing protein-specific energy potentials. The constraints from multiple predicted protein properties provide redundant and sometime conflicting information that can trap the optimization process into local minima and impairs the modeling efficiency.

RESULTS

To address these issues, we developed a self-adaptive protein modeling framework, SAMF. It eliminates redundancy of constraints and resolves conflicts, folds protein structures in an iterative way, and picks up the best structures by a deep quality analysis system. Without a large amount of complicated domain knowledge and numerous patches as barriers, SAMF achieves the state-of-the-art performance by exploiting the power of cutting-edge techniques of deep learning. SAMF has a modular design and can be easily customized and extended. As the quality of input constraints is ever growing, the superiority of SAMF will be amplified over time.

AVAILABILITY AND IMPLEMENTATION

The source code and data for reproducing the results is available at https://msracb.blob.core.windows.net/pub/psp/SAMF.zip.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

基于梯度下降的蛋白质建模是一种流行的蛋白质结构预测方法,它将预测的残基间距离和其他必要的约束作为输入,并通过最小化蛋白质特有的能量势来折叠蛋白质结构。来自多种预测蛋白质特性的约束提供了冗余且有时相互冲突的信息,这可能会使优化过程陷入局部最小值,并降低建模效率。

结果

为了解决这些问题,我们开发了一个自适应蛋白质建模框架 SAMF。它消除了约束的冗余并解决了冲突,以迭代的方式折叠蛋白质结构,并通过深度质量分析系统选择最佳结构。不需要大量复杂的领域知识和众多补丁作为障碍,SAMF 通过利用深度学习的尖端技术的力量实现了最先进的性能。SAMF 具有模块化设计,可轻松定制和扩展。随着输入约束质量的不断提高,SAMF 的优势将随着时间的推移而放大。

可用性和实现

可在 https://msracb.blob.core.windows.net/pub/psp/SAMF.zip 上获得重现结果的源代码和数据。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

1
SAMF: a self-adaptive protein modeling framework.SAMF:自适应蛋白建模框架。
Bioinformatics. 2021 Nov 18;37(22):4075-4082. doi: 10.1093/bioinformatics/btab411.
9
Protein threading using residue co-variation and deep learning.使用残基共变和深度学习进行蛋白质穿线。
Bioinformatics. 2018 Jul 1;34(13):i263-i273. doi: 10.1093/bioinformatics/bty278.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验