Mei Miao, Tan Xu
Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
Front Mol Biosci. 2021 May 13;8:671263. doi: 10.3389/fmolb.2021.671263. eCollection 2021.
SARS-CoV-2 belongs to the family of enveloped, single-strand RNA viruses known as Betacoronavirus in Coronaviridae, first reported late 2019 in China. It has since been circulating world-wide, causing the COVID-19 epidemic with high infectivity and fatality rates. As of the beginning of April 2021, pandemic SARS-CoV-2 has infected more than 130 million people and led to more than 2.84 million deaths. Given the severity of the epidemic, scientists from academia and industry are rushing to identify antiviral strategies to combat the disease. There are several strategies in antiviral drugs for coronaviruses including empirical testing of known antiviral drugs, large-scale phenotypic screening of compound libraries and target-based drug discovery. To date, an increasing number of drugs have been shown to have anti-coronavirus activities and , but only remdesivir and several neutralizing antibodies have been approved by the US FDA for treating COVID-19. However, remdesivir's clinical effects are controversial and new antiviral drugs are still urgently needed. We will discuss the current status of the drug discovery efforts against COVID-19 and potential future directions. With the ever-increasing movability of human population and globalization of world economy, emerging and reemerging viral infectious diseases seriously threaten public health. Particularly the past and ongoing outbreaks of coronaviruses cause respiratory, enteric, hepatic and neurological diseases in infected animals and human (Woo et al., 2009). The human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) usually cause common cold with mild, self-limiting upper respiratory tract infections. By contrast, the emergence of three deadly human betacoronaviruses, middle east respiratory syndrome coronavirus (MERS) (Zaki et al., 2012), severe acute respiratory syndrome coronavirus (SARS-CoV) (Lee et al., 2003), the SARS-CoV-2 (Jin et al., 2020a) highlight the need to identify new treatment strategies for viral infections. SARS-CoV-2 is the etiological agent of COVID-19 disease named by World Health Organization (WHO) (Zhu N. et al., 2020). This disease manifests as either an asymptomatic infection or a mild to severe pneumonia. This pandemic disease causes extent morbidity and mortality in the whole world, especially regions out of China. Similar to SARS and MERS, the SARS CoV-2 genome encodes four structural proteins, sixteen non-structural proteins (nsp) and accessory proteins. The structural proteins include spike (S), envelope (E), membrane (M), nucleoprotein (N). The spike glycoprotein directly recognizes and engages cellular receptors during viral entry. The four non-structural proteins including papain-like protease (PL), 3-chymotrypsin-like protease (3CL), helicase, and RNA-dependent RNA polymerase (RdRp) are key enzymes involved in viral transcription and replication. The spike and the four key enzymes were considered attractive targets to develop antiviral agents (Zumla et al., 2016). The catalytic sites of the four enzymes of SARS-CoV2 share high similarities with SARS CoV and MERS in genomic sequences (Morse et al., 2020). Besides, the structures of the key drug-binding pockets are highly conserved among the three coronaviruses (Morse et al., 2020). Therefore, it follows naturally that existing anti-SARS-CoV and anti-MERS drugs targeting these enzymes can be repurposed for SARS-CoV-2. Based on previous studies in SARS-CoV and MERS-CoV, it is anticipated a number of therapeutics can be used to control or prevent emerging infectious disease COVID-19 (Li and de Clercq, 2020; Wang et al., 2020c; Ita, 2021), these include small-molecule drugs, peptides, and monoclonal antibodies. Given the urgency of the SARS-CoV-2 outbreak, here we discuss the discovery and development of new therapeutics for SARS-CoV-2 infection based on the strategies from which the new drugs are derived.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)属于冠状病毒科有包膜的单链RNA病毒家族中的β冠状病毒属,2019年末首次在中国被报道。此后它一直在全球传播,引发了具有高感染率和死亡率的新冠肺炎疫情。截至2021年4月初,全球大流行的SARS-CoV-2已感染超过1.3亿人,并导致超过284万人死亡。鉴于疫情的严重性,学术界和工业界的科学家们正在争分夺秒地确定对抗该疾病的抗病毒策略。冠状病毒的抗病毒药物有多种策略,包括对已知抗病毒药物进行经验性测试、对化合物库进行大规模表型筛选以及基于靶点的药物发现。迄今为止,越来越多的药物已显示出具有抗冠状病毒活性, 但只有瑞德西韦和几种中和抗体已被美国食品药品监督管理局(FDA)批准用于治疗新冠肺炎。然而,瑞德西韦的临床效果存在争议,仍然迫切需要新的抗病毒药物。我们将讨论针对新冠肺炎的药物研发工作的现状以及未来可能的方向。随着人类流动性的不断增加和世界经济的全球化,新出现和再次出现的病毒传染病严重威胁着公众健康。特别是过去和正在发生的冠状病毒疫情在受感染的动物和人类中引发呼吸道、肠道、肝脏和神经系统疾病(Woo等人,2009年)。人类冠状病毒(HCoV)毒株(HCoV-229E、HCoV-OC43、HCoV-NL63和HCoV-HKU1)通常引起普通感冒,伴有轻度、自限性的上呼吸道感染。相比之下,三种致命的人类β冠状病毒——中东呼吸综合征冠状病毒(MERS)(Zaki等人,2012年)、严重急性呼吸综合征冠状病毒(SARS-CoV)(Lee等人,2003年)、SARS-CoV-2(Jin等人,2020a)的出现凸显了确定病毒感染新治疗策略的必要性。SARS-CoV-2是世界卫生组织(WHO)命名的新冠肺炎疾病的病原体(Zhu N.等人,2020年)。这种疾病表现为无症状感染或轻度至重度肺炎。这种大流行疾病在全球范围内造成了广泛的发病率和死亡率,尤其是在中国以外的地区。与SARS和MERS类似,SARS-CoV-2基因组编码四种结构蛋白、十六种非结构蛋白(nsp)和辅助蛋白。结构蛋白包括刺突(S)、包膜(E)、膜(M)、核蛋白(N)。刺突糖蛋白在病毒进入过程中直接识别并结合细胞受体。四种非结构蛋白包括木瓜样蛋白酶(PL)、3-糜蛋白酶样蛋白酶(3CL)、解旋酶和RNA依赖性RNA聚合酶(RdRp)是参与病毒转录和复制的关键酶。刺突蛋白和这四种关键酶被认为是开发抗病毒药物的有吸引力的靶点(Zumla等人,2016年)。SARS-CoV-2的这四种酶的催化位点在基因组序列上与SARS-CoV和MERS具有高度相似性(Morse等人,2020年)。此外,这三种冠状病毒中关键药物结合口袋的结构高度保守(Morse等人,2020年)。因此,自然而然地,现有的针对这些酶的抗SARS-CoV和抗MERS药物可以重新用于SARS-CoV-2。基于先前对SARS-CoV和MERS-CoV的研究,预计有多种治疗方法可用于控制或预防新出现的传染病新冠肺炎(Li和de Clercq,2020年;Wang等人,2020c;Ita,2021年),这些包括小分子药物、肽和单克隆抗体。鉴于SARS-CoV-2疫情的紧迫性,在此我们基于新药来源的策略讨论SARS-CoV-2感染新治疗方法的发现和开发。