Suppr超能文献

基于注意力的神经架构搜索在行人再识别中的应用。

Attention-Based Neural Architecture Search for Person Re-Identification.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6627-6639. doi: 10.1109/TNNLS.2021.3082701. Epub 2022 Oct 27.

Abstract

Recent years have witnessed significant progress of person reidentification (reID) driven by expert-designed deep neural network architectures. Despite the remarkable success, such architectures often suffer from high model complexity and time-consuming pretraining process, as well as the mismatches between the image classification-driven backbones and the reID task. To address these issues, we introduce neural architecture search (NAS) into automatically designing person reID backbones, i.e., reID-NAS, which is achieved via automatically searching attention-based network architectures from scratch. Different from traditional NAS approaches that originated for image classification, we design a reID-based search space as well as a search objective to fit NAS for the reID tasks. In terms of the search space, reID-NAS includes a lightweight attention module to precisely locate arbitrary pedestrian bounding boxes, which is automatically added as attention to the reID architectures. In terms of the search objective, reID-NAS introduces a new retrieval objective to search and train reID architectures from scratch. Finally, we propose a hybrid optimization strategy to improve the search stability in reID-NAS. In our experiments, we validate the effectiveness of different parts in reID-NAS, and show that the architecture searched by reID-NAS achieves a new state of the art, with one order of magnitude fewer parameters on three-person reID datasets. As a concomitant benefit, the reliance on the pretraining process is vastly reduced by reID-NAS, which facilitates one to directly search and train a lightweight reID model from scratch.

摘要

近年来,受专家设计的深度神经网络架构推动,人体重识别(reID)取得了显著进展。尽管取得了显著的成功,但这些架构通常存在模型复杂度高、预训练过程耗时以及图像分类驱动的骨干网络与 reID 任务不匹配等问题。为了解决这些问题,我们将神经架构搜索(NAS)引入到自动设计人体重识别骨干网络中,即 reID-NAS,它通过从 scratch 自动搜索基于注意力的网络架构来实现。与传统源于图像分类的 NAS 方法不同,我们设计了一个基于 reID 的搜索空间和搜索目标,以适应 reID 任务的 NAS。在搜索空间方面,reID-NAS 包括一个轻量级注意力模块,用于精确定位任意行人边界框,并将其自动添加为注意力到 reID 架构中。在搜索目标方面,reID-NAS 引入了一个新的检索目标,用于从 scratch 搜索和训练 reID 架构。最后,我们提出了一种混合优化策略来提高 reID-NAS 的搜索稳定性。在我们的实验中,我们验证了 reID-NAS 中不同部分的有效性,并表明 reID-NAS 搜索到的架构在三人 reID 数据集上实现了新的技术水平,参数数量减少了一个数量级。作为一个附带的好处,reID-NAS 大大减少了对预训练过程的依赖,这使得人们可以直接从 scratch 搜索和训练轻量级 reID 模型。

相似文献

1
Attention-Based Neural Architecture Search for Person Re-Identification.
IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6627-6639. doi: 10.1109/TNNLS.2021.3082701. Epub 2022 Oct 27.
2
Hierarchical neural architecture search with adaptive global-local feature learning for Magnetic Resonance Image reconstruction.
Comput Biol Med. 2024 Jan;168:107774. doi: 10.1016/j.compbiomed.2023.107774. Epub 2023 Nov 28.
3
A Dynamic Part-Attention Model for Person Re-Identification.
Sensors (Basel). 2019 May 5;19(9):2080. doi: 10.3390/s19092080.
5
An End-to-End Foreground-Aware Network for Person Re-Identification.
IEEE Trans Image Process. 2021;30:2060-2071. doi: 10.1109/TIP.2021.3050839. Epub 2021 Jan 21.
6
Neural architecture search based on dual attention mechanism for image classification.
Math Biosci Eng. 2023 Jan;20(2):2691-2715. doi: 10.3934/mbe.2023126. Epub 2022 Nov 28.
7
A Richly Annotated Pedestrian Dataset for Person Retrieval in Real Surveillance Scenarios.
IEEE Trans Image Process. 2019 Apr;28(4):1575-1590. doi: 10.1109/TIP.2018.2878349. Epub 2018 Oct 26.
8
Bidirectional Interaction Network for Person Re-Identification.
IEEE Trans Image Process. 2021;30:1935-1948. doi: 10.1109/TIP.2021.3049943. Epub 2021 Jan 20.
9
Searching Efficient Model-Guided Deep Network for Image Denoising.
IEEE Trans Image Process. 2023;32:668-681. doi: 10.1109/TIP.2022.3231741. Epub 2023 Jan 6.
10
DIPO: Differentiable Parallel Operation Blocks for Surgical Neural Architecture Search.
IEEE J Biomed Health Inform. 2024 Sep;28(9):5540-5550. doi: 10.1109/JBHI.2024.3406065. Epub 2024 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验