IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6627-6639. doi: 10.1109/TNNLS.2021.3082701. Epub 2022 Oct 27.
Recent years have witnessed significant progress of person reidentification (reID) driven by expert-designed deep neural network architectures. Despite the remarkable success, such architectures often suffer from high model complexity and time-consuming pretraining process, as well as the mismatches between the image classification-driven backbones and the reID task. To address these issues, we introduce neural architecture search (NAS) into automatically designing person reID backbones, i.e., reID-NAS, which is achieved via automatically searching attention-based network architectures from scratch. Different from traditional NAS approaches that originated for image classification, we design a reID-based search space as well as a search objective to fit NAS for the reID tasks. In terms of the search space, reID-NAS includes a lightweight attention module to precisely locate arbitrary pedestrian bounding boxes, which is automatically added as attention to the reID architectures. In terms of the search objective, reID-NAS introduces a new retrieval objective to search and train reID architectures from scratch. Finally, we propose a hybrid optimization strategy to improve the search stability in reID-NAS. In our experiments, we validate the effectiveness of different parts in reID-NAS, and show that the architecture searched by reID-NAS achieves a new state of the art, with one order of magnitude fewer parameters on three-person reID datasets. As a concomitant benefit, the reliance on the pretraining process is vastly reduced by reID-NAS, which facilitates one to directly search and train a lightweight reID model from scratch.
近年来,受专家设计的深度神经网络架构推动,人体重识别(reID)取得了显著进展。尽管取得了显著的成功,但这些架构通常存在模型复杂度高、预训练过程耗时以及图像分类驱动的骨干网络与 reID 任务不匹配等问题。为了解决这些问题,我们将神经架构搜索(NAS)引入到自动设计人体重识别骨干网络中,即 reID-NAS,它通过从 scratch 自动搜索基于注意力的网络架构来实现。与传统源于图像分类的 NAS 方法不同,我们设计了一个基于 reID 的搜索空间和搜索目标,以适应 reID 任务的 NAS。在搜索空间方面,reID-NAS 包括一个轻量级注意力模块,用于精确定位任意行人边界框,并将其自动添加为注意力到 reID 架构中。在搜索目标方面,reID-NAS 引入了一个新的检索目标,用于从 scratch 搜索和训练 reID 架构。最后,我们提出了一种混合优化策略来提高 reID-NAS 的搜索稳定性。在我们的实验中,我们验证了 reID-NAS 中不同部分的有效性,并表明 reID-NAS 搜索到的架构在三人 reID 数据集上实现了新的技术水平,参数数量减少了一个数量级。作为一个附带的好处,reID-NAS 大大减少了对预训练过程的依赖,这使得人们可以直接从 scratch 搜索和训练轻量级 reID 模型。