Suppr超能文献

内在肌肉无力对成骨不全症中肌肉-骨骼串扰的影响。

Impact of Intrinsic Muscle Weakness on Muscle-Bone Crosstalk in Osteogenesis Imperfecta.

机构信息

Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.

Department of Child Health, University of Missouri, Columbia, MO 65212, USA.

出版信息

Int J Mol Sci. 2021 May 7;22(9):4963. doi: 10.3390/ijms22094963.

Abstract

Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle-bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the pathogenesis of the skeletal muscle weakness in relation to the bone pathogenesis of OI in light of the critical role of muscle-bone crosstalk is essential to developing and identifying novel therapeutic targets and strategies for OI. This review will highlight how impaired skeletal muscle function contributes to the pathophysiology of OI and how this phenomenon further perpetuates bone fragility.

摘要

骨骼和肌肉是高度协同的组织,通过机械转导和生化信号广泛交流。成骨不全症(OI)是一种遗传性结缔组织疾病,表现为严重的骨骼脆弱,最近还被认为与骨骼肌肉无力有关。OI 中存在的骨骼和肌肉受损导致肌肉-骨骼相互作用发生改变,形成恶性循环,使肌肉进一步受损,骨骼也同样受到影响。目前,OI 尚无治愈方法,了解骨骼肌肉无力与 OI 的骨骼发病机制之间的关系,以及肌肉-骨骼相互作用的关键作用,对于开发和确定 OI 的新治疗靶点和策略至关重要。本文将重点介绍骨骼肌肉功能受损如何导致 OI 的病理生理学,并探讨这一现象如何进一步导致骨骼脆弱。

相似文献

1
Impact of Intrinsic Muscle Weakness on Muscle-Bone Crosstalk in Osteogenesis Imperfecta.
Int J Mol Sci. 2021 May 7;22(9):4963. doi: 10.3390/ijms22094963.
2
Osteogenesis Imperfecta: Muscle-Bone Interactions when Bi-directionally Compromised.
Curr Osteoporos Rep. 2018 Aug;16(4):478-489. doi: 10.1007/s11914-018-0456-6.
3
Skeletal muscle weakness in osteogenesis imperfecta mice.
Matrix Biol. 2010 Sep;29(7):638-44. doi: 10.1016/j.matbio.2010.06.006. Epub 2010 Jul 6.
4
Compromised Exercise Capacity and Mitochondrial Dysfunction in the Osteogenesis Imperfecta Murine (oim) Mouse Model.
J Bone Miner Res. 2019 Sep;34(9):1646-1659. doi: 10.1002/jbmr.3732. Epub 2019 Jun 13.
6
The functional muscle-bone unit in patients with osteogenesis imperfecta type I.
Bone. 2015 Oct;79:52-7. doi: 10.1016/j.bone.2015.05.019. Epub 2015 May 21.
7
Skeletal muscle mitochondrial function and whole-body metabolic energetics in the +/G610C mouse model of osteogenesis imperfecta.
Mol Genet Metab. 2022 Aug;136(4):315-323. doi: 10.1016/j.ymgme.2022.06.004. Epub 2022 Jun 13.
10
Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.
J Clin Endocrinol Metab. 2014 Feb;99(2):E356-62. doi: 10.1210/jc.2013-3209. Epub 2013 Nov 18.

引用本文的文献

1
Muscle impairments in osteogenesis imperfecta: a narrative review.
JBMR Plus. 2025 Jun 5;9(8):ziaf099. doi: 10.1093/jbmrpl/ziaf099. eCollection 2025 Aug.
2
Osteogenesis Imperfecta: Skeletal and Non-skeletal Challenges in Adulthood.
Calcif Tissue Int. 2024 Dec;115(6):863-872. doi: 10.1007/s00223-024-01236-x. Epub 2024 Jun 5.
3
Optimising Health-Related Quality of Life in Children With Osteogenesis Imperfecta.
Calcif Tissue Int. 2024 Dec;115(6):828-846. doi: 10.1007/s00223-024-01205-4. Epub 2024 May 2.
4
Extra-Skeletal Manifestations in Osteogenesis Imperfecta Mouse Models.
Calcif Tissue Int. 2024 Dec;115(6):847-862. doi: 10.1007/s00223-024-01213-4. Epub 2024 Apr 19.
5
The Potential Influence of Uremic Toxins on the Homeostasis of Bones and Muscles in Chronic Kidney Disease.
Biomedicines. 2023 Jul 24;11(7):2076. doi: 10.3390/biomedicines11072076.
6
Influence of the Severity of Osteogenesis Imperfecta on Cranial Measurements.
Children (Basel). 2023 Jun 8;10(6):1029. doi: 10.3390/children10061029.
7
Functional Independence of Taiwanese Children with Osteogenesis Imperfecta.
J Pers Med. 2022 Jul 24;12(8):1205. doi: 10.3390/jpm12081205.

本文引用的文献

1
Muscle transcriptome in mouse models of osteogenesis imperfecta.
Bone. 2021 Jul;148:115940. doi: 10.1016/j.bone.2021.115940. Epub 2021 Mar 31.
3
Impact of Genetic and Pharmacologic Inhibition of Myostatin in a Murine Model of Osteogenesis Imperfecta.
J Bone Miner Res. 2021 Apr;36(4):739-756. doi: 10.1002/jbmr.4223. Epub 2020 Dec 18.
5
Signaling pathways affected by mutations causing osteogenesis imperfecta.
Cell Signal. 2020 Dec;76:109789. doi: 10.1016/j.cellsig.2020.109789. Epub 2020 Sep 24.
6
LAMA2-Related Dystrophies: Clinical Phenotypes, Disease Biomarkers, and Clinical Trial Readiness.
Front Mol Neurosci. 2020 Aug 5;13:123. doi: 10.3389/fnmol.2020.00123. eCollection 2020.
7
Osteogenesis imperfecta-pathophysiology and therapeutic options.
Mol Cell Pediatr. 2020 Aug 14;7(1):9. doi: 10.1186/s40348-020-00101-9.
8
The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases.
Front Endocrinol (Lausanne). 2020 Jul 8;11:405. doi: 10.3389/fendo.2020.00405. eCollection 2020.
9
Osteogenesis imperfecta: an update on clinical features and therapies.
Eur J Endocrinol. 2020 Oct;183(4):R95-R106. doi: 10.1530/EJE-20-0299.
10
Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines.
Curr Osteoporos Rep. 2020 Aug;18(4):388-400. doi: 10.1007/s11914-020-00599-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验