Suppr超能文献

模拟 26S 蛋白酶体中 AAA+ 马达对底物的定向转位。

Simulating the directional translocation of a substrate by the AAA+ motor in the 26S proteasome.

机构信息

Department of Chemistry, University of Southern California, Los Angeles, CA 90089.

Department of Chemistry, University of Southern California, Los Angeles, CA 90089

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104245118.

Abstract

This work explored the molecular origin of substrate translocation by the AAA+ motor of the 26S proteasome. This exploration was performed by combining different simulation approaches including calculations of binding free energies, coarse-grained simulations, and considerations of the ATP hydrolysis energy. The simulations were used to construct the free energy landscape for the translocation process. This included the evaluation of the conformational barriers in different translocation steps. Our simulation reveals that the substrate translocation by the AAA+ motor is guided in part by electrostatic interactions. We also validated the experimental observation that bulkier residues in pore loop 1 are responsible for substrate translocation. However, our calculation also reveals that the lysine residues prior to the bulkier residues (conserved along pore loop 1) are also important for the translocation process. We believe that this computational study can help in guiding the ongoing research of the proteasome.

摘要

这项工作探索了 26S 蛋白酶体 AAA+ 马达底物易位的分子起源。通过结合不同的模拟方法,包括结合自由能计算、粗粒化模拟和 ATP 水解能的考虑,进行了这一探索。模拟用于构建易位过程的自由能景观。这包括评估不同易位步骤中的构象障碍。我们的模拟表明,AAA+ 马达的底物易位部分受到静电相互作用的指导。我们还验证了实验观察到的结果,即孔环 1 中的较大残基负责底物易位。然而,我们的计算还表明,较大残基之前的赖氨酸残基(沿孔环 1 保守)对于易位过程也很重要。我们相信,这项计算研究可以帮助指导蛋白酶体的持续研究。

相似文献

1
Simulating the directional translocation of a substrate by the AAA+ motor in the 26S proteasome.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104245118.
3
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.
4
Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating.
Cell Rep. 2018 Jul 31;24(5):1301-1315.e5. doi: 10.1016/j.celrep.2018.07.004.
5
Structure, Dynamics and Function of the 26S Proteasome.
Subcell Biochem. 2021;96:1-151. doi: 10.1007/978-3-030-58971-4_1.
6
Structure and Function of the 26S Proteasome.
Annu Rev Biochem. 2018 Jun 20;87:697-724. doi: 10.1146/annurev-biochem-062917-011931. Epub 2018 Apr 13.
7
Structure of the human 26S proteasome at a resolution of 3.9 Å.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7816-21. doi: 10.1073/pnas.1608050113. Epub 2016 Jun 24.
8
Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5544-9. doi: 10.1073/pnas.1403409111. Epub 2014 Mar 24.
9
Conformational switching of the 26S proteasome enables substrate degradation.
Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616. Epub 2013 Jun 16.
10
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Mol Cell. 2017 Sep 7;67(5):799-811.e8. doi: 10.1016/j.molcel.2017.07.023. Epub 2017 Aug 24.

引用本文的文献

1
Energetic and structural insights behind calcium induced conformational transition in calmodulin.
Proteins. 2024 Mar;92(3):384-394. doi: 10.1002/prot.26620. Epub 2023 Nov 1.
2
USP14-regulated allostery of the human proteasome by time-resolved cryo-EM.
Nature. 2022 May;605(7910):567-574. doi: 10.1038/s41586-022-04671-8. Epub 2022 Apr 27.

本文引用的文献

1
Exploring the Proteolysis Mechanism of the Proteasomes.
J Phys Chem B. 2020 Jul 9;124(27):5626-5635. doi: 10.1021/acs.jpcb.0c04435. Epub 2020 Jun 25.
2
3
The molecular principles governing the activity and functional diversity of AAA+ proteins.
Nat Rev Mol Cell Biol. 2020 Jan;21(1):43-58. doi: 10.1038/s41580-019-0183-6. Epub 2019 Nov 21.
4
The structure of the PA28-20S proteasome complex from Plasmodium falciparum and implications for proteostasis.
Nat Microbiol. 2019 Nov;4(11):1990-2000. doi: 10.1038/s41564-019-0524-4. Epub 2019 Aug 5.
5
Charge-mediated proteasome targeting.
FASEB J. 2019 Jun;33(6):6852-6866. doi: 10.1096/fj.201802237R. Epub 2019 Feb 27.
6
Role of Diffusion in Unfolding and Translocation of Multidomain Titin I27 Substrates by a Clp ATPase Nanomachine.
J Phys Chem B. 2019 Mar 28;123(12):2623-2635. doi: 10.1021/acs.jpcb.8b10282. Epub 2019 Feb 12.
7
Theoretical study of the inhibition mechanism of human 20S proteasome by dihydroeponemycin.
Eur J Med Chem. 2019 Feb 15;164:399-407. doi: 10.1016/j.ejmech.2018.12.062. Epub 2018 Dec 25.
8
Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):534-539. doi: 10.1073/pnas.1817752116. Epub 2018 Dec 17.
9
Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
Nature. 2019 Jan;565(7737):49-55. doi: 10.1038/s41586-018-0736-4. Epub 2018 Nov 12.
10
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验