Suppr超能文献

高通量可开发性分析能够在文库规模上鉴定可生产的蛋白质支架变体。

High-throughput developability assays enable library-scale identification of producible protein scaffold variants.

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2026658118.

Abstract

Proteins require high developability-quantified by expression, solubility, and stability-for robust utility as therapeutics, diagnostics, and in other biotechnological applications. Measuring traditional developability metrics is low throughput in nature, often slowing the developmental pipeline. We evaluated the ability of 10 variations of three high-throughput developability assays to predict the bacterial recombinant expression of paratope variants of the protein scaffold Gp2. Enabled by a phenotype/genotype linkage, assay performance for 10 variants was calculated via deep sequencing of populations sorted by proxied developability. We identified the most informative assay combination via cross-validation accuracy and correlation feature selection and demonstrated the ability of machine learning models to exploit nonlinear mutual information to increase the assays' predictive utility. We trained a random forest model that predicts expression from assay performance that is 35% closer to the experimental variance and trains 80% more efficiently than a model predicting from sequence information alone. Utilizing the predicted expression, we performed a site-wise analysis and predicted mutations consistent with enhanced developability. The validated assays offer the ability to identify developable proteins at unprecedented scales, reducing the bottleneck of protein commercialization.

摘要

蛋白质需要具有高可开发性——通过表达、溶解度和稳定性来衡量——才能在治疗、诊断和其他生物技术应用中得到广泛应用。测量传统的可开发性指标的通量较低,这往往会减缓研发进程。我们评估了三种高通量可开发性测定方法的 10 种变体,以预测蛋白支架 Gp2 的表位变体在细菌中的重组表达。通过表型/基因型的联系,通过对通过近似可开发性排序的群体进行深度测序,计算了 10 种变体的测定性能。我们通过交叉验证准确性和相关性特征选择确定了最具信息量的测定组合,并展示了机器学习模型利用非线性互信息来提高测定的预测实用性的能力。我们训练了一个随机森林模型,该模型根据测定性能预测表达,其与实验方差的接近程度提高了 35%,并且比仅根据序列信息预测的模型训练效率提高了 80%。利用预测的表达,我们进行了位点分析,并预测了与增强可开发性一致的突变。经过验证的测定方法提供了以空前规模识别可开发蛋白的能力,从而减少了蛋白商业化的瓶颈。

相似文献

1
3
Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation.
ACS Synth Biol. 2023 Sep 15;12(9):2600-2615. doi: 10.1021/acssynbio.3c00196. Epub 2023 Aug 29.
4
Determinants of Developability and Evolvability of Synthetic Miniproteins as Ligand Scaffolds.
J Mol Biol. 2023 Dec 15;435(24):168339. doi: 10.1016/j.jmb.2023.168339. Epub 2023 Nov 3.
6
Biophysical Characterization Platform Informs Protein Scaffold Evolvability.
ACS Comb Sci. 2019 Apr 8;21(4):323-335. doi: 10.1021/acscombsci.8b00182. Epub 2019 Feb 18.
8
An accelerated surface-mediated stress assay of antibody instability for developability studies.
MAbs. 2020 Jan-Dec;12(1):1815995. doi: 10.1080/19420862.2020.1815995.
9
In vitro and in silico assessment of the developability of a designed monoclonal antibody library.
MAbs. 2019 Feb/Mar;11(2):388-400. doi: 10.1080/19420862.2018.1556082. Epub 2019 Jan 18.
10
Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds.
ACS Synth Biol. 2023 Dec 15;12(12):3608-3622. doi: 10.1021/acssynbio.3c00409. Epub 2023 Nov 27.

引用本文的文献

1
Engineering Affibody Binders to Death Receptor 5 and Tumor Necrosis Factor Receptor 1 With Improved Stability.
Biotechnol Bioeng. 2025 Jun;122(6):1386-1396. doi: 10.1002/bit.28954. Epub 2025 Mar 5.
3
Structure-based protein and small molecule generation using EGNN and diffusion models: A comprehensive review.
Comput Struct Biotechnol J. 2024 Jun 26;23:2779-2797. doi: 10.1016/j.csbj.2024.06.021. eCollection 2024 Dec.
5
Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds.
ACS Synth Biol. 2023 Dec 15;12(12):3608-3622. doi: 10.1021/acssynbio.3c00409. Epub 2023 Nov 27.
6
Determinants of Developability and Evolvability of Synthetic Miniproteins as Ligand Scaffolds.
J Mol Biol. 2023 Dec 15;435(24):168339. doi: 10.1016/j.jmb.2023.168339. Epub 2023 Nov 3.
7
Generative models for protein sequence modeling: recent advances and future directions.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad358.
8
Predicting and Interpreting Protein Developability Via Transfer of Convolutional Sequence Representation.
ACS Synth Biol. 2023 Sep 15;12(9):2600-2615. doi: 10.1021/acssynbio.3c00196. Epub 2023 Aug 29.
9
Protein engineering via sequence-performance mapping.
Cell Syst. 2023 Aug 16;14(8):656-666. doi: 10.1016/j.cels.2023.06.009. Epub 2023 Jul 25.

本文引用的文献

1
A dual-reporter system for investigating and optimizing protein translation and folding in E. coli.
Nat Commun. 2021 Oct 19;12(1):6093. doi: 10.1038/s41467-021-26337-1.
2
An in vivo platform to select and evolve aggregation-resistant proteins.
Nat Commun. 2020 Apr 14;11(1):1816. doi: 10.1038/s41467-020-15667-1.
3
Predicting Antibody Developability Profiles Through Early Stage Discovery Screening.
MAbs. 2020 Jan-Dec;12(1):1743053. doi: 10.1080/19420862.2020.1743053.
4
Machine Learning Enables Accurate Prediction of Asparagine Deamidation Probability and Rate.
Mol Ther Methods Clin Dev. 2019 Oct 1;15:264-274. doi: 10.1016/j.omtm.2019.09.008. eCollection 2019 Dec 13.
5
Phage Display Libraries for Antibody Therapeutic Discovery and Development.
Antibodies (Basel). 2019 Aug 23;8(3):44. doi: 10.3390/antib8030044.
6
Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16367-16377. doi: 10.1073/pnas.1903888116. Epub 2019 Aug 1.
7
Retargeting CD19 Chimeric Antigen Receptor T Cells via Engineered CD19-Fusion Proteins.
Mol Pharm. 2019 Aug 5;16(8):3544-3558. doi: 10.1021/acs.molpharmaceut.9b00418. Epub 2019 Jul 15.
8
Development of a high-throughput solubility screening assay for use in antibody discovery.
MAbs. 2019 May/Jun;11(4):747-756. doi: 10.1080/19420862.2019.1589851. Epub 2019 Mar 26.
9
10
Five computational developability guidelines for therapeutic antibody profiling.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4025-4030. doi: 10.1073/pnas.1810576116. Epub 2019 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验