School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands.
Front Immunol. 2021 May 17;12:668007. doi: 10.3389/fimmu.2021.668007. eCollection 2021.
We identified abnormally methylated, differentially expressed genes (DEGs) and pathogenic mechanisms in different immune cells of RA and SLE by comprehensive bioinformatics analysis. Six microarray data sets of each immune cell (CD19 B cells, CD4 T cells and CD14 monocytes) were integrated to screen DEGs and differentially methylated genes by using R package "limma." Gene ontology annotations and KEGG analysis of aberrant methylome of DEGs were done using DAVID online database. Protein-protein interaction (PPI) network was generated to detect the hub genes and their methylation levels were compared using DiseaseMeth 2.0 database. Aberrantly methylated DEGs in CD19 B cells (173 and 180), CD4 T cells (184 and 417) and CD14 monocytes (193 and 392) of RA and SLE patients were identified. We detected 30 hub genes in different immune cells of RA and SLE and confirmed their expression using FACS sorted immune cells by qPCR. Among them, 12 genes (BPTF, PHC2, JUN, KRAS, PTEN, FGFR2, ALB, SERB-1, SKP2, TUBA1A, IMP3, and SMAD4) of RA and 12 genes (OAS1, RSAD2, OASL, IFIT3, OAS2, IFIH1, CENPE, TOP2A, PBK, KIF11, IFIT1, and ISG15) of SLE are proposed as potential biomarker genes based on receiver operating curve analysis. Our study suggests that MAPK signaling pathway could potentially differentiate the mechanisms affecting T- and B- cells in RA, whereas PI3K pathway may be used for exploring common disease pathways between RA and SLE. Compared to individual data analyses, more dependable and precise filtering of results can be achieved by integrating several relevant data sets.
我们通过全面的生物信息学分析,确定了 RA 和 SLE 不同免疫细胞中异常甲基化和差异表达基因(DEGs)及致病机制。综合了每个免疫细胞(CD19 B 细胞、CD4 T 细胞和 CD14 单核细胞)的 6 个微阵列数据集,使用 R 包“limma”筛选 DEGs 和差异甲基化基因。使用 DAVID 在线数据库对 DEGs 异常甲基化组进行基因本体注释和 KEGG 分析。生成蛋白质-蛋白质相互作用(PPI)网络以检测枢纽基因,并使用 DiseaseMeth 2.0 数据库比较其甲基化水平。鉴定了 RA 和 SLE 患者 CD19 B 细胞(173 和 180)、CD4 T 细胞(184 和 417)和 CD14 单核细胞(193 和 392)中异常甲基化的 DEGs。我们在 RA 和 SLE 的不同免疫细胞中检测到 30 个枢纽基因,并通过 FACS 分选免疫细胞的 qPCR 验证了它们的表达。其中,12 个基因(BPTF、PHC2、JUN、KRAS、PTEN、FGFR2、ALB、SERB-1、SKP2、TUBA1A、IMP3 和 SMAD4)在 RA 中,12 个基因(OAS1、RSAD2、OASL、IFIT3、OAS2、IFIH1、CENPE、TOP2A、PBK、KIF11、IFIT1 和 ISG15)在 SLE 中被认为是潜在的生物标志物基因,基于接受者操作特征曲线分析。我们的研究表明,MAPK 信号通路可能潜在地区分影响 RA 中 T 细胞和 B 细胞的机制,而 PI3K 通路可能用于探索 RA 和 SLE 之间的共同疾病途径。与个体数据分析相比,通过整合几个相关数据集,可以实现更可靠和精确的结果过滤。