Suppr超能文献

近红外庚烷菁染料用于基于纳米颗粒的光声成像和光热治疗。

Near-Infrared Heptamethine Cyanine Dyes for Nanoparticle-Based Photoacoustic Imaging and Photothermal Therapy.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States.

Department of Chemistry, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30303, United States.

出版信息

J Med Chem. 2021 Jun 24;64(12):8798-8805. doi: 10.1021/acs.jmedchem.1c00771. Epub 2021 Jun 3.

Abstract

We have synthesized and characterized a library of near-infrared (NIR) heptamethine cyanine dyes for biomedical application as photoacoustic imaging and photothermal agents. These hydrophobic dyes were incorporated into a polymer-based nanoparticle system to provide aqueous solubility and protection of the photophysical properties of each dye scaffold. Among those heptamethine cyanine dyes analyzed, 13 compounds within the nontoxic polymeric nanoparticles have been selected to exemplify structural relationships in terms of photostability, photoacoustic imaging, and photothermal behavior within the NIR (∼650-850 nm) spectral region. The most contributing structural features observed in our dye design include hydrophobicity, rotatable bonds, heavy atom effects, and stability of the central cyclohexene ring within the dye core. The NIR agents developed within this project serve to elicit a structure-function relationship with emphasis on their photoacoustic and photothermal characteristics aiming at producing customizable NIR photoacoustic and photothermal tools for clinical use.

摘要

我们合成并表征了一系列近红外(NIR)七甲川菁染料,用于光声成象和光热治疗的生物医学应用。这些疏水性染料被整合到聚合物纳米颗粒系统中,以提供每个染料支架的亲水性和光物理性质的保护。在分析的七甲川菁染料中,已选择了 13 种无毒聚合物纳米颗粒内的化合物,以举例说明光稳定性、光声成象和近红外(约 650-850nm)光谱区域内的光热行为方面的结构关系。在我们的染料设计中观察到的最主要的结构特征包括疏水性、可旋转键、重原子效应和染料核心中环己烯环的稳定性。本项目中开发的近红外试剂旨在产生结构-功能关系,重点是它们的光声和光热特性,旨在为临床应用生产定制的近红外光声和光热工具。

相似文献

1
Near-Infrared Heptamethine Cyanine Dyes for Nanoparticle-Based Photoacoustic Imaging and Photothermal Therapy.
J Med Chem. 2021 Jun 24;64(12):8798-8805. doi: 10.1021/acs.jmedchem.1c00771. Epub 2021 Jun 3.
2
Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities.
Int J Nanomedicine. 2016 Sep 22;11:4865-4874. doi: 10.2147/IJN.S107479. eCollection 2016.
3
Counterion influence on near-infrared-II heptamethine cyanine salts for photothermal therapy.
Bioorg Chem. 2024 Apr;145:107206. doi: 10.1016/j.bioorg.2024.107206. Epub 2024 Feb 13.
5
Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Sep-Oct;15(5):e1910. doi: 10.1002/wnan.1910. Epub 2023 Jun 12.
7
Multi-dye theranostic nanoparticle platform for bioimaging and cancer therapy.
Int J Nanomedicine. 2012;7:2739-50. doi: 10.2147/IJN.S28357. Epub 2012 Jun 1.

引用本文的文献

2
Novel NIR fluorescent probe IR-546 inhibits melanoma through the AKT/GSK3β/β-catenin pathway.
Mol Med. 2025 Jun 10;31(1):226. doi: 10.1186/s10020-025-01289-0.
3
Dimerizing Heptamethine Cyanine Fluorophores from the Meso Position: Synthesis, Optical Properties, and Metal Sensing Studies.
Org Lett. 2025 Jun 27;27(25):6623-6629. doi: 10.1021/acs.orglett.5c01620. Epub 2025 Jun 9.
5
Divergent Syntheses of Near-Infrared Light-Activated Molecular Jackhammers for Cancer Cell Eradication.
Adv Sci (Weinh). 2024 Dec;11(45):e2405965. doi: 10.1002/advs.202405965. Epub 2024 Oct 13.
6
Influence of structural moieties in squaraine dyes on optoacoustic signal shape and intensity.
Chem. 2024 Feb 8;10(2):713-729. doi: 10.1016/j.chempr.2023.11.016. Epub 2023 Dec 22.
8
Synthesis, Optical Properties, and In Vivo Biodistribution Performance of Polymethine Cyanine Fluorophores.
ACS Pharmacol Transl Sci. 2023 Jul 25;6(8):1192-1206. doi: 10.1021/acsptsci.3c00101. eCollection 2023 Aug 11.
9
Electronic Structure and Excited-State Dynamics of DNA-Templated Monomers and Aggregates of Asymmetric Polymethine Dyes.
J Phys Chem A. 2023 Jun 15;127(23):4901-4918. doi: 10.1021/acs.jpca.3c00562. Epub 2023 Jun 1.
10
A cyanine dye probe for K detection based on DNA construction of G-quadruplex.
Anal Sci. 2023 Jul;39(7):1163-1170. doi: 10.1007/s44211-023-00325-5. Epub 2023 May 25.

本文引用的文献

1
Fast processes of nanoparticle blood clearance: Comprehensive study.
J Control Release. 2020 Oct 10;326:181-191. doi: 10.1016/j.jconrel.2020.07.014. Epub 2020 Jul 15.
3
NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy.
J Mater Chem B. 2018 Jan 21;6(3):349-365. doi: 10.1039/c7tb02573d. Epub 2017 Dec 6.
4
Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging.
Mol Pharm. 2020 May 4;17(5):1538-1545. doi: 10.1021/acs.molpharmaceut.9b01238. Epub 2020 Apr 7.
5
NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green.
Int J Nanomedicine. 2019 Sep 25;14:7823-7838. doi: 10.2147/IJN.S207486. eCollection 2019.
6
Nanomaterial Applications in Photothermal Therapy for Cancer.
Materials (Basel). 2019 Mar 7;12(5):779. doi: 10.3390/ma12050779.
7
Photoacoustic imaging of integrin-overexpressing tumors using a novel ICG-based contrast agent in mice.
Photoacoustics. 2018 Aug 3;11:36-45. doi: 10.1016/j.pacs.2018.07.007. eCollection 2018 Sep.
8
The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery.
ACS Nano. 2018 Jun 26;12(6):6179-6192. doi: 10.1021/acsnano.8b02830. Epub 2018 Jun 4.
9
Indocyanine green-incorporating nanoparticles for cancer theranostics.
Theranostics. 2018 Feb 2;8(5):1227-1242. doi: 10.7150/thno.22872. eCollection 2018.
10
A Tumor-Activatable Theranostic Nanomedicine Platform for NIR Fluorescence-Guided Surgery and Combinatorial Phototherapy.
Theranostics. 2018 Jan 1;8(3):767-784. doi: 10.7150/thno.21209. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验