Westerlind Helga, Maciejewski Mateusz, Frisell Thomas, Jelinsky Scott A, Ziemek Daniel, Askling Johan
Karolinska Institutet, Solna, Sweden.
Pfizer, Cambridge, Massachusetts, United States.
ACR Open Rheumatol. 2021 Jul;3(7):457-463. doi: 10.1002/acr2.11266. Epub 2021 Jun 4.
The objectives of this study were to assess the 1-year persistence to methotrexate (MTX) initiated as the first ever conventional synthetic disease-modifying antirheumatic drug in new-onset rheumatoid arthritis (RA) and to investigate the marginal gains and robustness of the results by increasing the number and nature of covariates and by using data-driven, instead of hypothesis-based, methods to predict this persistence.
Through the Swedish Rheumatology Quality Register, linked to other data sources, we identified a cohort of 5475 patients with new-onset RA in 2006-2016 who were starting MTX monotherapy as their first disease-modifying antirheumatic drug. Data on phenotype at diagnosis and demographics were combined with increasingly detailed data on medical disease history and medication use in four increasingly complex data sets (48-4162 covariates). We performed manual model building using logistic regression. We also performed five different machine learning (ML) methods and combined the ML results into an ensemble model. We calculated the area under the receiver operating characteristic curve (AUROC) and made calibration plots. We trained on 90% of the data, and tested the models on a holdout data set.
Of the 5475 patients, 3834 (70%) remained on MTX monotherapy 1 year after treatment start. Clinical RA disease activity and baseline characteristics were most strongly associated with the outcome. The best manual model had an AUROC of 0.66 (95% confidence interval [CI] 0.60-0.71). For the ML methods, Lasso regression performed best (AUROC = 0.67; 95% CI 0.62-0.71).
Approximately two thirds of patients with early RA who start MTX remain on this therapy 1 year later. Predicting this persistence remains a challenge, whether using hypothesis-based or ML models, and may yet require additional types of data.
本研究的目的是评估作为新发类风湿性关节炎(RA)首次使用的传统合成抗风湿药物起始使用的甲氨蝶呤(MTX)的1年持续用药率,并通过增加协变量的数量和性质以及使用数据驱动而非基于假设的方法来预测这种持续用药情况,以研究结果的边际收益和稳健性。
通过与其他数据源相关联的瑞典风湿病质量登记册,我们确定了2006 - 2016年开始使用MTX单药治疗作为其首个抗风湿药物的5475例新发RA患者队列。将诊断时的表型数据和人口统计学数据与四个日益复杂的数据集中关于病史和药物使用的日益详细的数据(48 - 4162个协变量)相结合。我们使用逻辑回归进行手动模型构建。我们还进行了五种不同的机器学习(ML)方法,并将ML结果合并为一个集成模型。我们计算了受试者工作特征曲线下面积(AUROC)并制作了校准图。我们在90%的数据上进行训练,并在一个保留数据集上测试模型。
在5475例患者中,3834例(70%)在开始治疗1年后仍继续使用MTX单药治疗。临床RA疾病活动度和基线特征与结局的相关性最强。最佳手动模型的AUROC为0.66(95%置信区间[CI] 0.60 - 0.71)。对于ML方法,套索回归表现最佳(AUROC = 0.67;95% CI 0.62 - 0.71)。
开始使用MTX的早期RA患者中约三分之二在1年后仍继续使用该疗法。无论是使用基于假设的模型还是ML模型,预测这种持续用药情况仍然是一个挑战,可能还需要其他类型的数据。