Suppr超能文献

计算机辅助药物发现针对复杂免疫治疗靶点 - 人 c-Rel 蛋白。

In silico drug discovery for a complex immunotherapeutic target - human c-Rel protein.

机构信息

Algorithm379, Laisves g. 7, Vilnius LT-12007, Lithuania.

Galapagos BV, Zernikedreef 16, 2333CL Leiden, the Netherlands.

出版信息

Biophys Chem. 2021 Sep;276:106593. doi: 10.1016/j.bpc.2021.106593. Epub 2021 Apr 24.

Abstract

Target evaluation and rational drug design rely on identifying and characterising small-molecule binding sites on therapeutically relevant target proteins. Immunotherapeutics development is especially challenging because of complex disease etiology and heterogenous nature of targets. c-Rel protein, a promising target in many human inflammatory and cancer pathologies, was selected as a case study for an effective in silico screening platform development since this transcription factor currently has no successful therapeutic inhibitors or modulators. This study introduces a novel in silico screening approach to probe binding sites using structural validation sets, molecular modelling and describes a method of a computer-aided drug design when a crystal structure is not available for the target of interest. In addition, we showed that binding sites can be analysed with the machine learning as well as molecular simulation approaches to help assess and systematically analyse how drug candidates can exert their mode of action. Finally, this cutting-edge approach was subjected to a high through-put virtual screen of selected 34 M drug-like compounds filtered from a library of 659 M compounds by identifying the most promising structures and proposing potential action mechanisms for the future development of highly selective human c-Rel inhibitors and/or modulators.

摘要

目标评估和合理药物设计依赖于鉴定和描述治疗相关靶蛋白上的小分子结合位点。由于疾病病因复杂和靶点异质性,免疫疗法的开发尤其具有挑战性。c-Rel 蛋白是许多人类炎症和癌症病理中的一个有前途的靶点,被选为开发有效计算筛选平台的案例研究,因为这种转录因子目前没有成功的治疗性抑制剂或调节剂。本研究引入了一种新的计算筛选方法,使用结构验证集、分子建模来探测结合位点,并描述了当目标缺乏晶体结构时的计算机辅助药物设计方法。此外,我们还表明,可以使用机器学习和分子模拟方法来分析结合位点,以帮助评估和系统分析候选药物如何发挥其作用模式。最后,这种前沿方法通过高通量虚拟筛选,从 65900 万个化合物库中筛选出 3400 万个药物样化合物,确定了最有前途的结构,并提出了潜在的作用机制,为未来开发高度选择性的人 c-Rel 抑制剂和/或调节剂提供了方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验