Nguyen Tam N T, Sha Sha, Hong Moo Sun, Maloney Andrew J, Barone Paul W, Neufeld Caleb, Wolfrum Jacqueline, Springs Stacy L, Sinskey Anthony J, Braatz Richard D
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
Mol Ther Methods Clin Dev. 2021 Apr 16;21:642-655. doi: 10.1016/j.omtm.2021.04.006. eCollection 2021 Jun 11.
Manufacturing of recombinant adeno-associated virus (rAAV) viral vectors remains challenging, with low yields and low full:empty capsid ratios in the harvest. To elucidate the dynamics of recombinant viral production, we develop a mechanistic model for the synthesis of rAAV viral vectors by triple plasmid transfection based on the underlying biological processes derived from wild-type AAV. The model covers major steps starting from exogenous DNA delivery to the reaction cascade that forms viral proteins and DNA, which subsequently result in filled capsids, and the complex functions of the Rep protein as a regulator of the packaging plasmid gene expression and a catalyst for viral DNA packaging. We estimate kinetic parameters using dynamic data from literature and in-house triple transient transfection experiments. Model predictions of productivity changes as a result of the varied input plasmid ratio are benchmarked against transfection data from the literature. Sensitivity analysis suggests that (1) the poorly coordinated timeline of capsid synthesis and viral DNA replication results in a low ratio of full virions in harvest, and (2) repressive function of the Rep protein could be impeding capsid production at a later phase. The analyses from the mathematical model provide testable hypotheses for evaluation and reveal potential process bottlenecks that can be investigated.
重组腺相关病毒(rAAV)载体的生产仍然具有挑战性,收获物中的产量低且完整衣壳与空衣壳的比例低。为了阐明重组病毒生产的动态过程,我们基于源自野生型AAV的潜在生物学过程,开发了一种通过三质粒转染合成rAAV病毒载体的机理模型。该模型涵盖了从外源DNA递送开始到形成病毒蛋白和DNA的反应级联的主要步骤,这些步骤随后产生填充的衣壳,以及Rep蛋白作为包装质粒基因表达的调节剂和病毒DNA包装催化剂的复杂功能。我们使用来自文献和内部三重瞬时转染实验的动态数据估计动力学参数。根据文献中的转染数据,对由于输入质粒比例变化导致的生产力变化的模型预测进行了基准测试。敏感性分析表明:(1)衣壳合成和病毒DNA复制的时间线协调不佳导致收获物中完整病毒粒子的比例较低;(2)Rep蛋白的抑制功能可能在后期阻碍衣壳的产生。数学模型的分析提供了可测试的假设以供评估,并揭示了可以研究的潜在工艺瓶颈。