Suppr超能文献

机器学习预测全膝关节置换术中股骨和胫骨植入物尺寸不匹配情况。

Machine Learning Predicts Femoral and Tibial Implant Size Mismatch for Total Knee Arthroplasty.

作者信息

Polce Evan M, Kunze Kyle N, Paul Katlynn M, Levine Brett R

机构信息

University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA.

出版信息

Arthroplast Today. 2021 Feb 26;8:268-277.e2. doi: 10.1016/j.artd.2021.01.006. eCollection 2021 Apr.

Abstract

BACKGROUND

Despite reasonable accuracy with preoperative templating, the search for an optimal planning tool remains an unsolved dilemma. The purpose of the present study was to apply machine learning (ML) using preoperative demographic variables to predict mismatch between templating and final component size in primary total knee arthroplasty (TKA) cases.

METHODS

This was a retrospective case-control study of primary TKA patients between September 2012 and April 2018. The primary outcome was mismatch between the templated and final implanted component sizes extracted from the operative database. The secondary outcome was mismatch categorized as undersized and oversized. Five supervised ML algorithms were trained using 6 demographic features. Prediction accuracies were obtained as a metric of performance for binary mismatch (yes/no) and multilevel (undersized/correct/oversized) classifications.

RESULTS

A total of 1801 patients were included. For binary classification, the best-performing algorithm for predicting femoral and tibial mismatch was the stochastic gradient boosting model (area under the curve: 0.76/0.72, calibration intercepts: 0.05/0.05, calibration slopes: 0.55/0.7, and Brier scores: 0.20/0.21). For multiclass classification, the best-performing algorithms had accuracies of 83.9% and 82.9% for predicting the concordance/mismatch of the femoral and tibial implant, respectively. Model predictions of greater than 51.0% and 47.9% represented high-risk thresholds for femoral and tibial sizing mismatch, respectively.

CONCLUSIONS

ML algorithms predicted templating mismatch with good accuracy. External validation is necessary to confirm the performance and reliability of these algorithms. Predicting sizing mismatch is the first step in using ML to aid in the prediction of final TKA component sizes. Further studies to optimize parameters and predictions for the algorithms are ongoing.

摘要

背景

尽管术前模板规划具有一定的准确性,但寻找最佳的规划工具仍然是一个未解决的难题。本研究的目的是应用机器学习(ML),利用术前人口统计学变量预测初次全膝关节置换术(TKA)病例中模板与最终假体组件尺寸之间的不匹配。

方法

这是一项对2012年9月至2018年4月期间初次TKA患者的回顾性病例对照研究。主要结局是从手术数据库中提取的模板化与最终植入假体组件尺寸之间的不匹配。次要结局是分为尺寸过小和尺寸过大的不匹配。使用6个人口统计学特征训练了5种监督式ML算法。获得预测准确性作为二元不匹配(是/否)和多级(尺寸过小/正确/尺寸过大)分类的性能指标。

结果

共纳入1801例患者。对于二元分类,预测股骨和胫骨不匹配的最佳算法是随机梯度提升模型(曲线下面积:0.76/0.72,校准截距:0.05/0.05,校准斜率:0.55/0.7,Brier评分:0.20/0.21)。对于多类分类,预测股骨和胫骨植入物一致性/不匹配的最佳算法准确率分别为83.9%和82.9%。大于51.0%和47.9%的模型预测分别代表股骨和胫骨尺寸不匹配的高风险阈值。

结论

ML算法能较好地预测模板不匹配。需要进行外部验证以确认这些算法的性能和可靠性。预测尺寸不匹配是使用ML辅助预测最终TKA组件尺寸的第一步。正在进行进一步研究以优化算法的参数和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3036/8167319/f5472ce8be2e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验