Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194, Japan.
Department of Mathematics, Department of Mathematical and Life Sciences, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama 1-3-1, Hiroshima, 700-0046, Japan.
J Math Biol. 2021 Jun 7;82(7):66. doi: 10.1007/s00285-021-01619-w.
Asymmetric cell division is one of the fundamental processes to create cell diversity in the early stage of embryonic development. During this process, the polarity formation in the cell membrane has been considered as a key process by which the entire polarity formation in the cytosol is controlled, and it has been extensively studied in both experiments and mathematical models. Nonetheless, a mathematically rigorous analysis of the polarity formation in the asymmetric cell division has been little explored, particularly for bulk-surface models. In this article, we deal with polarity models proposed for describing the PAR polarity formation in the asymmetric cell division of a C. elegans embryo. Using a simpler but mathematically consistent model, we exhibit the long time behavior of the polarity formation of a bulk-surface cell. Moreover, we mathematically prove the existence of stable polarity solutions of the model equation in an arbitrary high-dimensional domain and analyse how the boundary position of polarity domain is determined. Our results propose that the existence and dynamics of the polarity in the asymmetric cell division can be understood universally in terms of basic mathematical structures.
不对称细胞分裂是胚胎早期产生细胞多样性的基本过程之一。在这个过程中,细胞膜的极性形成被认为是控制整个细胞质极性形成的关键过程,在实验和数学模型中都进行了广泛的研究。然而,对于体-面模型,对于不对称细胞分裂中的极性形成的数学严格分析还很少探索。在本文中,我们处理了为描述 C. elegans 胚胎不对称细胞分裂中 PAR 极性形成而提出的极性模型。使用一个更简单但在数学上一致的模型,我们展示了体-面细胞的极性形成的长时间行为。此外,我们从数学上证明了模型方程在任意高维域中的稳定极性解的存在性,并分析了极性域的边界位置是如何确定的。我们的结果表明,不对称细胞分裂中极性的存在和动态可以根据基本的数学结构来普遍理解。