von Diezmann Lexy, Rog Ofer
J Phys Chem B. 2021 Jun 17;125(23):6162-6170. doi: 10.1021/acs.jpcb.1c03040. Epub 2021 Jun 7.
Biomolecules are distributed within cells by molecular-scale diffusion and binding events that are invisible in standard fluorescence microscopy. These molecular search kinetics are key to understanding nuclear signaling and chromosome organization and can be directly observed by single-molecule tracking microscopy. Here, we report a method to track individual proteins within intact gonads and apply it to study the molecular dynamics of the axis, a proteinaceous backbone that organizes meiotic chromosomes. Using either fluorescent proteins or enzymatically ligated dyes, we obtain multisecond trajectories with a localization precision of 15-25 nm in nuclei actively undergoing meiosis. Correlation with a reference channel allows for accurate measurement of protein dynamics, compensating for movements of the nuclei and chromosomes within the gonad. We find that axis proteins exhibit either static binding to chromatin or free diffusion in the nucleoplasm, and we separately quantify the motion parameters of these distinct populations. Freely diffusing axis proteins selectively explore chromatin-rich regions, suggesting they are circumventing the central phase-separated region of the nucleus. This work demonstrates that single-molecule microscopy can infer nanoscale-resolution dynamics within living tissue, expanding the possible applications of this approach.
生物分子通过标准荧光显微镜下不可见的分子尺度扩散和结合事件在细胞内分布。这些分子搜索动力学是理解核信号传导和染色体组织的关键,并且可以通过单分子追踪显微镜直接观察到。在这里,我们报告了一种在完整性腺内追踪单个蛋白质的方法,并将其应用于研究轴的分子动力学,轴是一种组织减数分裂染色体的蛋白质骨架。使用荧光蛋白或酶连接染料,我们在积极进行减数分裂的细胞核中获得了定位精度为15 - 25纳米的多秒轨迹。与参考通道的相关性允许对蛋白质动力学进行准确测量,补偿性腺内细胞核和染色体的运动。我们发现轴蛋白要么与染色质静态结合,要么在核质中自由扩散,并且我们分别量化了这些不同群体的运动参数。自由扩散的轴蛋白选择性地探索富含染色质的区域,表明它们正在避开细胞核的中央相分离区域。这项工作表明单分子显微镜可以推断活组织内的纳米级分辨率动力学,扩展了这种方法的可能应用。