MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
Parasit Vectors. 2021 Jun 8;14(1):311. doi: 10.1186/s13071-021-04789-0.
Mosquito control has the potential to significantly reduce malaria burden on a region, but to influence public health policy must also show cost-effectiveness. Gaps in our knowledge of mosquito population dynamics mean that mathematical modelling of vector control interventions have typically made simplifying assumptions about key aspects of mosquito ecology. Often, these assumptions can distort the predicted efficacy of vector control, particularly next-generation tools such as gene drive, which are highly sensitive to local mosquito dynamics.
We developed a discrete-time stochastic mathematical model of mosquito population dynamics to explore the fine-scale behaviour of egg-laying and larval density dependence on parameter estimation. The model was fitted to longitudinal mosquito population count data using particle Markov chain Monte Carlo methods.
By modelling fine-scale behaviour of egg-laying under varying density dependence scenarios we refine our life history parameter estimates, and in particular we see how model assumptions affect population growth rate (R), a crucial determinate of vector control efficacy.
Subsequent application of these new parameter estimates to gene drive models show how the understanding and implementation of fine-scale processes, when deriving parameter estimates, may have a profound influence on successful vector control. The consequences of this may be of crucial interest when devising future public health policy.
蚊虫控制有可能显著降低一个地区的疟疾负担,但要影响公共卫生政策,还必须显示成本效益。我们对蚊虫种群动态的了解存在差距,这意味着蚊虫控制干预措施的数学模型通常对蚊虫生态学的关键方面做出了简化假设。通常,这些假设会扭曲蚊虫控制的预测效果,特别是像基因驱动这样的下一代工具,它们对当地蚊虫动态非常敏感。
我们开发了一个蚊虫种群动态的离散时间随机数学模型,以探索产卵和幼虫密度对参数估计的细粒度行为。该模型使用粒子马尔可夫链蒙特卡罗方法拟合了纵向蚊虫种群计数数据。
通过在不同密度依赖情景下对产卵的细粒度行为进行建模,我们改进了我们的生活史参数估计,特别是我们看到了模型假设如何影响种群增长率(R),这是蚊虫控制效果的关键决定因素。
随后将这些新的参数估计应用于基因驱动模型,表明在推导参数估计时,对细粒度过程的理解和实施如何可能对成功的蚊虫控制产生深远影响。在制定未来公共卫生政策时,这可能是至关重要的。