Suppr超能文献

基于深度学习的复杂背景下马铃薯晚疫病增强田间检测

Enhanced Field-Based Detection of Potato Blight in Complex Backgrounds Using Deep Learning.

作者信息

Johnson Joe, Sharma Geetanjali, Srinivasan Srikant, Masakapalli Shyam Kumar, Sharma Sanjeev, Sharma Jagdev, Dua Vijay Kumar

机构信息

School of Computing & Electrical Engineering, Indian Institute of Technology Mandi, Kamand, H.P., India.

BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, H.P., India.

出版信息

Plant Phenomics. 2021 May 16;2021:9835724. doi: 10.34133/2021/9835724. eCollection 2021.

Abstract

Rapid and automated identification of blight disease in potato will help farmers to apply timely remedies to protect their produce. Manual detection of blight disease can be cumbersome and may require trained experts. To overcome these issues, we present an automated system using the Mask Region-based convolutional neural network (Mask R-CNN) architecture, with residual network as the backbone network for detecting blight disease patches on potato leaves in field conditions. The approach uses transfer learning, which can generate good results even with small datasets. The model was trained on a dataset of 1423 images of potato leaves obtained from fields in different geographical locations and at different times of the day. The images were manually annotated to create over 6200 labeled patches covering diseased and healthy portions of the leaf. The Mask R-CNN model was able to correctly differentiate between the diseased patch on the potato leaf and the similar-looking background soil patches, which can confound the outcome of binary classification. To improve the detection performance, the original RGB dataset was then converted to HSL, HSV, LAB, XYZ, and YCrCb color spaces. A separate model was created for each color space and tested on 417 field-based test images. This yielded 81.4% mean average precision on the LAB model and 56.9% mean average recall on the HSL model, slightly outperforming the original RGB color space model. Manual analysis of the detection performance indicates an overall precision of 98% on leaf images in a field environment containing complex backgrounds.

摘要

快速自动识别马铃薯晚疫病将有助于农民及时采取补救措施来保护他们的农产品。人工检测晚疫病可能会很麻烦,而且可能需要训练有素的专家。为了克服这些问题,我们提出了一种使用基于掩码区域的卷积神经网络(Mask R-CNN)架构的自动化系统,以残差网络作为骨干网络,用于在田间条件下检测马铃薯叶片上的晚疫病斑块。该方法使用迁移学习,即使数据集较小也能产生良好的结果。该模型在一个包含1423张马铃薯叶片图像的数据集上进行训练,这些图像是从不同地理位置和一天中不同时间的田间获取的。这些图像经过人工标注,创建了6200多个标记斑块,覆盖了叶片的患病和健康部分。Mask R-CNN模型能够正确区分马铃薯叶片上的患病斑块和外观相似的背景土壤斑块,而后者可能会混淆二分类的结果。为了提高检测性能,然后将原始的RGB数据集转换为HSL、HSV、LAB、XYZ和YCrCb颜色空间。为每个颜色空间创建了一个单独的模型,并在417张基于田间的测试图像上进行测试。这使得LAB模型的平均精度达到81.4%,HSL模型的平均召回率达到56.9%,略优于原始的RGB颜色空间模型。对检测性能的人工分析表明,在包含复杂背景的田间环境中,叶片图像的总体精度为98%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/593d/8147694/b8668215aacb/PLANTPHENOMICS2021-9835724.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验