Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany.
Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany.
Basic Res Cardiol. 2021 Jun 8;116(1):40. doi: 10.1007/s00395-021-00881-9.
Obtained from the right cell-type, mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) promote stroke recovery. Within this process, microvascular remodeling plays a central role. Herein, we evaluated the effects of MSC-sEVs on the proliferation, migration, and tube formation of human cerebral microvascular endothelial cells (hCMEC/D3) in vitro and on post-ischemic angiogenesis, brain remodeling and neurological recovery after middle cerebral artery occlusion (MCAO) in mice. In vitro, sEVs obtained from hypoxic (1% O), but not 'normoxic' (21% O) MSCs dose-dependently promoted endothelial proliferation, migration, and tube formation and increased post-ischemic endothelial survival. sEVs from hypoxic MSCs regulated a distinct set of miRNAs in hCMEC/D3 cells previously linked to angiogenesis, three being upregulated (miR-126-3p, miR-140-5p, let-7c-5p) and three downregulated (miR-186-5p, miR-370-3p, miR-409-3p). LC/MS-MS revealed 52 proteins differentially abundant in sEVs from hypoxic and 'normoxic' MSCs. 19 proteins were enriched (among them proteins involved in extracellular matrix-receptor interaction, focal adhesion, leukocyte transendothelial migration, protein digestion, and absorption), and 33 proteins reduced (among them proteins associated with metabolic pathways, extracellular matrix-receptor interaction, focal adhesion, and actin cytoskeleton) in hypoxic MSC-sEVs. Post-MCAO, sEVs from hypoxic MSCs increased microvascular length and branching point density in previously ischemic tissue assessed by 3D light sheet microscopy over up to 56 days, reduced delayed neuronal degeneration and brain atrophy, and enhanced neurological recovery. sEV-induced angiogenesis in vivo depended on the presence of polymorphonuclear neutrophils. In neutrophil-depleted mice, MSC-sEVs did not influence microvascular remodeling. sEVs from hypoxic MSCs have distinct angiogenic properties. Hypoxic preconditioning enhances the restorative effects of MSC-sEVs.
从正确的细胞类型中获得的间充质基质细胞 (MSC) 衍生的小细胞外囊泡 (sEV) 可促进中风恢复。在此过程中,微血管重塑起着核心作用。在此,我们评估了 MSC-sEV 对体外人脑血管内皮细胞 (hCMEC/D3) 的增殖、迁移和管状形成的影响,以及在大脑中动脉闭塞 (MCAO) 后缺血后血管生成、脑重塑和神经恢复的影响。在体外,缺氧 (1% O) 而非“常氧” (21% O) MSC 来源的 sEV 以剂量依赖性方式促进内皮细胞增殖、迁移和管状形成,并增加缺血后内皮细胞的存活。缺氧 MSC 的 sEV 调节了 hCMEC/D3 细胞中先前与血管生成相关的一组独特 miRNA,其中三个上调 (miR-126-3p、miR-140-5p、let-7c-5p),三个下调 (miR-186-5p、miR-370-3p、miR-409-3p)。LC/MS-MS 显示缺氧和“常氧” MSC 的 sEV 中差异丰富的蛋白质有 52 种。19 种蛋白质富集 (其中包括参与细胞外基质-受体相互作用、焦点粘附、白细胞穿过内皮迁移、蛋白质消化和吸收的蛋白质),33 种蛋白质减少 (其中包括与代谢途径、细胞外基质-受体相互作用、焦点粘附和肌动蛋白细胞骨架相关的蛋白质)在缺氧 MSC-sEV 中。MCAO 后,3D 光片显微镜评估缺血组织中 sEV 来源的缺氧 MSC 增加微血管长度和分支点密度,长达 56 天,减少迟发性神经元变性和脑萎缩,并增强神经恢复。体内 sEV 诱导的血管生成取决于多形核中性粒细胞的存在。在中性粒细胞耗竭的小鼠中,MSC-sEV 不影响微血管重塑。缺氧 MSC 的 sEV 具有独特的血管生成特性。缺氧预处理增强了 MSC-sEV 的修复作用。