Blitz Rogério, Storck Michael, Baune Bernhard T, Dugas Martin, Opel Nils
Institute of Medical Informatics, University of Münster, Münster, Germany.
Department of Psychiatry, University of Münster, Münster, Germany.
JMIR Ment Health. 2021 Jun 9;8(6):e26681. doi: 10.2196/26681.
Empirically driven personalized diagnostic applications and treatment stratification is widely perceived as a major hallmark in psychiatry. However, databased personalized decision making requires standardized data acquisition and data access, which are currently absent in psychiatric clinical routine.
Here, we describe the informatics infrastructure implemented at the psychiatric Münster University Hospital, which allows standardized acquisition, transfer, storage, and export of clinical data for future real-time predictive modelling in psychiatric routine.
We designed and implemented a technical architecture that includes an extension of the electronic health record (EHR) via scalable standardized data collection and data transfer between EHRs and research databases, thus allowing the pooling of EHRs and research data in a unified database and technical solutions for the visual presentation of collected data and analyses results in the EHR. The Single-source Metadata ARchitecture Transformation (SMA:T) was used as the software architecture. SMA:T is an extension of the EHR system and uses module-driven engineering to generate standardized applications and interfaces. The operational data model was used as the standard. Standardized data were entered on iPads via the Mobile Patient Survey (MoPat) and the web application Mopat@home, and the standardized transmission, processing, display, and export of data were realized via SMA:T.
The technical feasibility of the informatics infrastructure was demonstrated in the course of this study. We created 19 standardized documentation forms with 241 items. For 317 patients, 6451 instances were automatically transferred to the EHR system without errors. Moreover, 96,323 instances were automatically transferred from the EHR system to the research database for further analyses.
In this study, we present the successful implementation of the informatics infrastructure enabling standardized data acquisition and data access for future real-time predictive modelling in clinical routine in psychiatry. The technical solution presented here might guide similar initiatives at other sites and thus help to pave the way toward future application of predictive models in psychiatric clinical routine.
基于经验的个性化诊断应用和治疗分层被广泛视为精神病学的一个主要标志。然而,基于数据库的个性化决策需要标准化的数据采集和数据访问,而这在精神病学临床常规中目前并不存在。
在此,我们描述了明斯特大学精神病学医院实施的信息学基础设施,该设施允许对临床数据进行标准化采集、传输、存储和导出,以便在精神病学常规中进行未来的实时预测建模。
我们设计并实施了一种技术架构,该架构包括通过可扩展的标准化数据收集以及电子健康记录(EHR)与研究数据库之间的数据传输来扩展电子健康记录,从而允许在统一数据库中汇集电子健康记录和研究数据,并提供用于在电子健康记录中直观呈现收集到的数据和分析结果的技术解决方案。单源元数据架构转换(SMA:T)被用作软件架构。SMA:T是电子健康记录系统的扩展,它使用模块驱动工程来生成标准化应用程序和接口。操作数据模型被用作标准。标准化数据通过移动患者调查(MoPat)和网络应用程序Mopat@home在iPad上输入,并通过SMA:T实现数据的标准化传输、处理、显示和导出。
在本研究过程中证明了信息学基础设施的技术可行性。我们创建了19份包含241个条目的标准化文档表格。对于317名患者,6451个实例被自动无误地传输到电子健康记录系统。此外,96323个实例被自动从电子健康记录系统传输到研究数据库以进行进一步分析。
在本研究中,我们展示了信息学基础设施的成功实施,该设施能够实现标准化的数据采集和数据访问,以便在精神病学临床常规中进行未来的实时预测建模。此处提出的技术解决方案可能会指导其他机构开展类似举措,从而有助于为预测模型在精神病学临床常规中的未来应用铺平道路。