Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy 114 rue Edouard Vaillant, 94805 Villejuif, France.
Nucleic Acids Res. 2021 Jun 21;49(11):6569-6586. doi: 10.1093/nar/gkab463.
Replicative helicases are essential proteins that unwind DNA in front of replication forks. Their loading depends on accessory proteins and in bacteria, DnaC and DnaI are well characterized loaders. However, most bacteria do not express either of these two proteins. Instead, they are proposed to rely on DciA, an ancestral protein unrelated to DnaC/I. While the DciA structure from Vibrio cholerae shares no homology with DnaC, it reveals similarities with DnaA and DnaX, two proteins involved during replication initiation. As other bacterial replicative helicases, VcDnaB adopts a toroid-shaped homo-hexameric structure, but with a slightly open dynamic conformation in the free state. We show that VcDnaB can load itself on DNA in vitro and that VcDciA stimulates this function, resulting in an increased DNA unwinding. VcDciA interacts with VcDnaB with a 3/6 stoichiometry and we show that a determinant residue, which discriminates DciA- and DnaC/I-helicases, is critical in vivo. Our work is the first step toward the understanding of the ancestral mode of loading of bacterial replicative helicases on DNA. It sheds light on the strategy employed by phage helicase loaders to hijack bacterial replicative helicases and may explain the recurrent domestication of dnaC/I through evolution in bacteria.
复制解旋酶是一种必需的蛋白质,能够在复制叉前解开 DNA。它们的加载依赖于辅助蛋白,在细菌中,DnaC 和 DnaI 是两种特征明确的加载蛋白。然而,大多数细菌并不表达这两种蛋白中的任何一种。相反,它们被认为依赖于 DciA,一种与 DnaC/I 无关的古老蛋白。虽然霍乱弧菌的 DciA 结构与 DnaC 没有同源性,但它与参与复制起始的 DnaA 和 DnaX 具有相似性。与其他细菌复制解旋酶一样,VcDnaB 采用六聚体同源的环形结构,但在自由状态下具有略微开放的动态构象。我们表明 VcDnaB 可以在体外将自身加载到 DNA 上,并且 VcDciA 可以刺激这种功能,从而增加 DNA 的解旋。VcDciA 与 VcDnaB 以 3/6 的计量比相互作用,我们表明,一个区分 DciA 和 DnaC/I 解旋酶的关键残基在体内是至关重要的。我们的工作是理解细菌复制解旋酶在 DNA 上的古老加载模式的第一步。它揭示了噬菌体解旋酶加载蛋白劫持细菌复制解旋酶的策略,并可能解释了 dnaC/I 通过细菌进化的反复驯化。